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DSP Algorithms

 DSP algorithms are described by nonterminating 
programs, which execute the same code 
repetitively.

Y(n)=a*x(n)+b*x(n‐1)+c*x(n‐2), for n=1 to ∞

 An iteration – execution of all the computations 
in the algorithm once.

 Critical path – the longest path between inputs 
and outputs in combinational logic circuit.

 Latency – the difference between the time an 
output is generated and the time at which its 
corresponding input was received by the system.

Representation of DSP Algorithms

 Graphical representations are efficient for 
investigating and analyzing data flow 
properties of DSP algorithms.

 Good for map DSP algorithms to hardware 
implementations

 Four methods for graphical representation
 Block diagram

 Signal-flow graph (SFG)

 Data-flow graph (DFG)

 Dependence graph (DG)



3

Block Diagram

 Consists of functional blocks connected with 
directed edges, which represent data flow from 
its input block to its output block.

 Edges may or may not contain delay elements.

 Example

Y(n)=a*x(n)+b*x(n‐1)+c*x(n‐2)

Signal-Flow Graph (SFG)

 SFG: a collection of nodes and directed edges
 Nodes: represent computations and/or task, sum all 

incoming signals

 Directed edge (j,k): denotes a linear transformation 
from the input signal at node j to the output signal at 
node k.

 Linear SFGs can be transformed into different forms 
without changing the system functions.

 Usually used for linear time-invariant DSP systems
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Data-Flow Graph (DFG) (1)

 DFG: nodes represent computation(or functions or 
subtasks), while the directed edges represent data paths 
(data communications between nodes), each edge has a 
nonnegative number of delays associated with it.

 DFG: captures the data-driven property of DSP 
algorithm: any node can fire (perform its computation) 
whenever all its input data are available.

A0 A1

DFG Constraints(2)

 Each edge describes a precedence 
constraint between two nodes
 Intra-iteration precedence constraint: if the 

edge has zero delays.

 Inter-iteration precedence constraint: if the 
edge has one or more delays.

 DFGs and Block Diagrams can be used to 
describe  both linear single-rate and 
nonlinear multi-rate DSP systems.
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Examples of DFG

 Nodes are complex blocks (coarse-grain)

 Nodes can describe expanders/decimators 
in multi-rate DFGs

Example of DFG(2)

 y(n)=a*y(n-1)+x(n)

DFG Synchronous DFG
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Synchronous DFG (SDFG)

 SDFG is a special case of data-flow graph.

 In SDFG, the number of data samples produced 
or consumed are specified a priori.

 For example, node B needs 1 data unit to fire 
and produces one data unit after completion.

 In multi-rate systems, that number could be 
greater than 1.

 By using node replication, a multi-rate system 
could be changed to a single-rate system.

Dependence Graph (DG)

 DG is a directed graph that shows the 
dependence of the computations in an 
algorithm

 The nodes represent computations and the 
edges represent precedence constraints 
among nodes.

 The DFG nodes are executed repetitively, 
while nodes in a dependence graph 
contains computations for all iterations.

 DFs are used for systolic array design.
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Dependence Graph

Y(n)=b0*x(n)+b1*x(n‐1)+b2*x(n‐2)
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Iteration Bound



8

Iteration bound

 Iteration: execution of all computations in 
the algorithm once.

 Iteration period: the time required to 
perform the iteration (sample period).

 Feedback imposes an inherent bound on 
the iteration period,

 Iteration bound is a characteristic of the 
representation of an algorithm in the form 
of DFG. Different representations of the 
same algorithm may lead to different 
iteration bounds.

Iteration bound

 The feedback imposes an inherent 
fundamental lower bound on the 
achievable iteration period.

 It is not possible to achieve iteration period 
less than the iteration bound even if we 
have an infinite processing power.
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Determine Iteration Bound
 Edges describe a precedence constraints

 intra-iteration denotes  “”
 inter-iteration denotes “”

 Critical path is the path with the longest 
computation time among all paths that contains 
no delay.

 A non-recursive DFG contains no loops
 A recursive DFG contains at least one loop.
 A loop is a directed path that begins and ends at 

the same node. 

Precedence Constraints

 The edge from A to B enforces the intra-iteration 
precedence, the kth iteration of A must be done 
before the kth iteration of B. AK  BK

 The edge from B to A enforces the inter-iteration 
precedence. The kth iteration of B must be executed 
before the (k+1)th iteration of A. BK  AK+1

 A0  B0  A1  B1  A2  B2 ….

(2)

A B

1D

(4)
(4)+ X

(2)

1D

y(n)

x(n)
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Critical Path
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Critical path 4->1->2->3 = 5 unit of time (u.t.)

5->1->2->3 5 u.t.

Critical Path A->B 6 u.t.

Recursive DFGNon-recursive DFG
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Determine Iteration Bound

 For recursive DFG, there is a fundamental lower 
bound “iteration bound” T

 Loop bound of the l-th loop = tl/wl
 tl is loop computation time, 
 wl is the delay in the loop.

 The critical loop is the loop with the maximum loop 
bound.

 The loop bound of the critical loop is the iteration 
bound.
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Iteration bound: Example

Precedence
A0  B0  A1  B1  A2  B2  A3  B3

If 2D instead of 1D;  loop bound =6/2=3
A0  B0  A2  B2  A4  B4  A6  B6

A1  B1  A3  B3  A5  B5  A7  B7

A B
(2)

1D

(4)

Iteration bound: Example

 Iteration bound

 Example 
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Algorithms for Computing 
Iteration Bound

Longest Path Matrix Algorithm

 A series of matrices are constructed L(m), 
m=1,2,..d, where d is the number of delays 
in the DFG.

 The value of is the longest 
computation time of all paths from delay 
element di to delay element dj that passes 
through m-1 delay elements, if no such 
path, then          = -1.
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Longest Path Matrix Algorithm

 First determine         L(1)

 Then high order matrices are computed by

where K is the set of integers k in the interval 
[1,d] such that neither             nor              holds
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Longest Path Matrix Algorithm
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