
1

CSE4210 Architecture & Hardware for DSP

Chapter 5

Iterative Bound

Instructor: Prof. Peter Lian
Department of Electrical

Engineering & Computer Science
Lassonde School of Engineering

York University

CSE4210 Architecture & Hardware for DSP

Graphical Representation

2

DSP Algorithms

 DSP algorithms are described by nonterminating
programs, which execute the same code
repetitively.

Y(n)=a*x(n)+b*x(n‐1)+c*x(n‐2), for n=1 to ∞

 An iteration – execution of all the computations
in the algorithm once.

 Critical path – the longest path between inputs
and outputs in combinational logic circuit.

 Latency – the difference between the time an
output is generated and the time at which its
corresponding input was received by the system.

Representation of DSP Algorithms

 Graphical representations are efficient for
investigating and analyzing data flow
properties of DSP algorithms.

 Good for map DSP algorithms to hardware
implementations

 Four methods for graphical representation
 Block diagram

 Signal-flow graph (SFG)

 Data-flow graph (DFG)

 Dependence graph (DG)

3

Block Diagram

 Consists of functional blocks connected with
directed edges, which represent data flow from
its input block to its output block.

 Edges may or may not contain delay elements.

 Example

Y(n)=a*x(n)+b*x(n‐1)+c*x(n‐2)

Signal-Flow Graph (SFG)

 SFG: a collection of nodes and directed edges
 Nodes: represent computations and/or task, sum all

incoming signals

 Directed edge (j,k): denotes a linear transformation
from the input signal at node j to the output signal at
node k.

 Linear SFGs can be transformed into different forms
without changing the system functions.

 Usually used for linear time-invariant DSP systems

4

Data-Flow Graph (DFG) (1)

 DFG: nodes represent computation(or functions or
subtasks), while the directed edges represent data paths
(data communications between nodes), each edge has a
nonnegative number of delays associated with it.

 DFG: captures the data-driven property of DSP
algorithm: any node can fire (perform its computation)
whenever all its input data are available.

A0 A1

DFG Constraints(2)

 Each edge describes a precedence
constraint between two nodes
 Intra-iteration precedence constraint: if the

edge has zero delays.

 Inter-iteration precedence constraint: if the
edge has one or more delays.

 DFGs and Block Diagrams can be used to
describe both linear single-rate and
nonlinear multi-rate DSP systems.

5

Examples of DFG

 Nodes are complex blocks (coarse-grain)

 Nodes can describe expanders/decimators
in multi-rate DFGs

Example of DFG(2)

 y(n)=a*y(n-1)+x(n)

DFG Synchronous DFG

(4)

1

A

B

A

B





y(n)x(n)
(2)

(4)

(2)

1

1

1
D

D

a

D

6

Synchronous DFG (SDFG)

 SDFG is a special case of data-flow graph.

 In SDFG, the number of data samples produced
or consumed are specified a priori.

 For example, node B needs 1 data unit to fire
and produces one data unit after completion.

 In multi-rate systems, that number could be
greater than 1.

 By using node replication, a multi-rate system
could be changed to a single-rate system.

Dependence Graph (DG)

 DG is a directed graph that shows the
dependence of the computations in an
algorithm

 The nodes represent computations and the
edges represent precedence constraints
among nodes.

 The DFG nodes are executed repetitively,
while nodes in a dependence graph
contains computations for all iterations.

 DFs are used for systolic array design.

7

Dependence Graph

Y(n)=b0*x(n)+b1*x(n‐1)+b2*x(n‐2)

CSE4210 Architecture & Hardware for DSP

Iteration Bound

8

Iteration bound

 Iteration: execution of all computations in
the algorithm once.

 Iteration period: the time required to
perform the iteration (sample period).

 Feedback imposes an inherent bound on
the iteration period,

 Iteration bound is a characteristic of the
representation of an algorithm in the form
of DFG. Different representations of the
same algorithm may lead to different
iteration bounds.

Iteration bound

 The feedback imposes an inherent
fundamental lower bound on the
achievable iteration period.

 It is not possible to achieve iteration period
less than the iteration bound even if we
have an infinite processing power.

9

Determine Iteration Bound
 Edges describe a precedence constraints

 intra-iteration denotes “”
 inter-iteration denotes “”

 Critical path is the path with the longest
computation time among all paths that contains
no delay.

 A non-recursive DFG contains no loops
 A recursive DFG contains at least one loop.
 A loop is a directed path that begins and ends at

the same node.

Precedence Constraints

 The edge from A to B enforces the intra-iteration
precedence, the kth iteration of A must be done
before the kth iteration of B. AK  BK

 The edge from B to A enforces the inter-iteration
precedence. The kth iteration of B must be executed
before the (k+1)th iteration of A. BK  AK+1

 A0  B0  A1  B1  A2  B2 ….

(2)

A B

1D

(4)
(4)+ X

(2)

1D

y(n)

x(n)

10

Critical Path

1

2

3

5

6

D

D

D

D

(1)

(1)

(1)

(2)

(2)

(2)

d1

d2

d3

d4

A B

(2)

1D

(4)

Critical path 4->1->2->3 = 5 unit of time (u.t.)

5->1->2->3 5 u.t.

Critical Path A->B 6 u.t.

Recursive DFGNon-recursive DFG

4

Determine Iteration Bound

 For recursive DFG, there is a fundamental lower
bound “iteration bound” T

 Loop bound of the l-th loop = tl/wl
 tl is loop computation time,
 wl is the delay in the loop.

 The critical loop is the loop with the maximum loop
bound.

 The loop bound of the critical loop is the iteration
bound.

11

Iteration bound: Example

Precedence
A0  B0  A1  B1  A2  B2  A3  B3

If 2D instead of 1D; loop bound =6/2=3
A0  B0  A2  B2  A4  B4  A6  B6

A1  B1  A3  B3  A5  B5  A7  B7

A B
(2)

1D

(4)

Iteration bound: Example

 Iteration bound

 Example

A B C(2)

(4)
(5)

2D

D

11
1

11
,

2

6
max 






T













l

l

Ll w

t
T max

12

CSE4210 Architecture & Hardware for DSP

Algorithms for Computing
Iteration Bound

Longest Path Matrix Algorithm

 A series of matrices are constructed L(m),
m=1,2,..d, where d is the number of delays
in the DFG.

 The value of is the longest
computation time of all paths from delay
element di to delay element dj that passes
through m-1 delay elements, if no such
path, then = -1.

)(
,
m
ji

)(
,
m
ji

13

Longest Path Matrix Algorithm

 First determine  L(1)

 Then high order matrices are computed by

where K is the set of integers k in the interval
[1,d] such that neither nor holds

 )(
,

)1(
,

)1(
, ,1max m

jkki
Kk

m
ji  




















 m
T

m
ii

dmi

)(
,

},..2,1{,
max



ℓi, j
(1)

ℓi,k
(1)  1 ℓk, j

(1)  1

Longest Path Matrix Algorithm

ℓ
3,1
(1)  2111 5

L(1) 

1 0 1 1
4 1 0 1
5 1 1 0
5 1 1 1



















L(2) 

4 1 0 1
5 4 1 0
5 5 1 1
1 5 1 1



















1

2

3

4

5

6

D

D

D

D

(1)

(1)

(1)

(2)

(2)

(2)

d1

d2

d3

d4

14

Longest Path Matrix Algorithm



















































51910

55910

4589

1458

1519

1559

1458

0145

)4(

)3(

L

L





















































1151

1155

0145

1014

1115

0115

1014

1101

)2(

)1(

L

L

2,
4

5
,

4

5
,

4

8
,

4

8
,

3

5
,

3

5
,

3

5
,

2

4
,

2

4
max 







T

