

Pipelining for Low Power
• In *M*-level pipelined filter running at the same clock rate as non-pipelined design, the power consumption is given by:

$$P_{pip} = C_{total} (\beta V_0)^2 f = \beta^2 C_{total} V_o^2 f = \beta^2 P_{seq}, \ 0 < \beta < 1$$
• How to find β ?

$$T_{seq} = \frac{C_{charge} V_o}{k(V_o - V_t)^2}, T_{pip} = \frac{\frac{C_{charge}}{M} \beta V_o}{k(\beta V_o - V_t)^2}$$

$$T_{seq} = T_{pip} \rightarrow \frac{C_{charge} V_o}{k(V_o - V_t)^2} = \frac{C_{charge} \beta V_o}{kM(\beta V_o - V_t)^2}$$

$$\rightarrow M (\beta V_o - V_t)^2 = \beta (V_o - V_t)^2$$

Parallel as a	arallel as a Low Power Too			
Architecture type	Voltage	Area	Power	
Simple datapath (no pipelining or parallelism)	5V	1	1	
Pipelined datapath	2.9V	1.3	0.39	
Parallel datapath	2.9V	3.4	0.36	
Pipeline-Parallel	2.0V	3.7	0.2	