
1

 CSE4210 Architecture & Hardware for DSP

CChhaapptteerr 77

RReettiimmiinngg

Instructor: Prof. Peter Lian
Department of Electrical

Engineering & Computer Science
Lassonde School of Engineering

York University

Introduction
n  Retiming is a transformation technique that is

used to change the locations of delay elements
in a circuit without changing its functionality.

n  Could be considered as a generalization of the
pipelining technique studies in Chapter 6
n  Pipelining is equivalent to introduce many delays at

the input followed by retiming
n  Applications

n  Reduce the number of registers in the circuit
n  Reduce the critical path of the system
n  Reduce the power consumption of the circuit
n  Logic synthesis

2

IIR Filter Example

w(n)=ay(n-1)+by(n-2)

y(n)=w(n-1) +x (n)

w1(n)=ay(n-1)

w2(n)=by(n-2)

y(n)=w(n-1) +x (n)

⊗

⊕
⊕ ⊗

x(n) y(n)

b

a D D

2D

(1)

(1)

(2)

(2)

⊗

⊕
⊕ ⊗

x(n) y(n)

b

a

D

D
2D

D

(1)

(1) (2)

(2)

Critical path = 3 Critical path = 2

y(n)=ay(n-2) + by(n-3) +x (n)

Retiming
n  Mapping G to Gr (retimed)

n  U and V are nodes, e is an edge
n  r(U) is a retiming value
n  w(e) is the weight of edge e from node U
à V in graph G

n  wr(e) is the weight of edge e in from node
U à V in retimed graph Gr

wr(e)=w(e)+r(V)-r(U)
n  A solution is feasible if all wr(e) ≥ 0

3

Retiming Value r(U)
n  Movement of register from input to output or vice

versa does not affect the functionality
n  Retiming value of node U

n  Example
Retime by 1, r(u)=1

Retime by -1, r(u)=-1

u u

2D

5D 3D

D 3D r(1)=-2

1 1

Feasible Solution
n  A solution is feasible if all wr(e) ≥ 0
n  wr(e)=w(e)+r(V)-r(U) for edge e=(U,V)

n  If r(U)<0, r(V)>0, wr(e)>0
n  If r(U)>0, r(V)<0, wr(e)>0 if |r(U)+r(v)|<w(e)
n  If r(U)>0, r(V)>0, wr(e)>0 if r(v)>r(U)
n  If r(U)<0, r(V)<0, wr(e)>0 if |r(U)|>|r(V)|

 r(U)>0

 r(U) <0

U V

 r(V) <0

 r(V)>0

4

IIR Filter Example

1010)4()2()24()24(

1010)3()2()23()23(

1)2(0)4()3()1(

=−+=−+⎯→⎯=⎯→⎯

=−+=−+⎯→⎯=⎯→⎯

====

rrww

rrww

rrrr

ee
r

ee
r

D D

2D

(1)

(1)

(2)

(2)
D

D
2D

D

(1)

(1) (2)

(2)

1 1

2

4

32

4

3

Retimed

 CSE4210 Architecture & Hardware for DSP

Retiming Properties

5

Property I
n  The weight of a retimed Path is given by:

p =V0
e0! →! V1

e1! →! V2!Vk−1
ek−1! →! Vk

wr (p) = wr (e0)+wr (e1)+!wr (ek−1)
wr (p) = w(e0)+ r(1)− r(0)+w(e1)+ r(2)− r(1)!+w(ek−1)+ r(k)− r(k −1)
wr (p) = w(e0)+w(e1)+!w(ek−1)+ r(k)− r(0)
wr (p) = w(p)+ r(k)− r(0)

wr (p) = w(p)+ r(k)− r(0)

Properties II to IV
n  Property II: Retiming does not change the

number of delays in a cycle
n  This is a special case of Property I, where

Vk=V0
n  Property III: Retiming does not alter the

iteration bound in a DFG
n  Property IV: Adding a constant j to the

retiming value of each node does not
change the mapping from G to Gr

6

 CSE4210 Architecture & Hardware for DSP

Retiming Techniques

Cutset Retiming
n  Cutset: A set of edges if removed, the graph G is

partitioned into 2 graphs G1,G2 .
n  Cutset retiming is done by adding k delays to all

the edges in the cutset from G1 to G2, and
removing k delays from the edges from G2 to G1

{ } { })(min)(min
1221

ewkew
GGGG ee ⎯→⎯⎯→⎯

≤≤−

7

Example 1
y(n)=ay(n-2) + by(n-3) +x (n)

D

D
3D

(1)

(1) (2)

(2)

1

2

4

D D

2D

(1)

(1)

(2)

(2)

1

32

4

3

Retimed

D

(1)

(2)

1

3

(1)

(2)

2

4

G1

G2

G1àG2: adding 1D
to 3à2, 1à4

G2àG1: removing 1D
from 2à1

Example 2
y(n)=ay(n-2) + by(n-3) +x (n)

D

D
2D

(1)

(1) (2)

(2)

1

2

4

D D

2D

(1)

(1)

(2)

(2)

1

32

4

3

Retimed

G1àG2: adding 1D
to 3à2, 4à2

G2àG1: removing 1D
from 2à1

(1) 2

G1

G2

D

2D

(1)

(2)

(2)

1

3

4

D

8

Cutset Retiming: Pipelining
n  Pipelining is a special case where there are no

nodes from G2 to G1 (no loops).

⊗⊗ ⊗⊗ ⊗⊗

⊕⊕ ⊕⊕ y(n)

x(n)

b0 b1 b1

D D

⊕⊕ ⊕⊕

⊗⊗ ⊗⊗ ⊗⊗
y(n)

x(n)

b0 b1 b1

D D

D D D

K-Slow Transformation
n  Replace each delay with N delays
Example:

After 2-slow transformation
 Clock

0 A0àB0
1
2 A2àB2
3
4 A4àB4

Tclk=2ut
Titer=2*2ut=4ut

Clock
0 A0àB0
1 A1àB1
2 A2àB2

Tclk=2ut
Titer=2ut

9

K-Slow Transformation
n  K-slow transformation

n  Input new samples every alternative cycles
n  Null operations account for odd clock cycles.
n  Hardware utilized only 50% time

n  Combining K-slow with retiming
n  Hardware utilization = 50%
n  Hardware can be fully utilized if two independent

operations are available.

Tclk=1ut
Titer=2*1ut=2ut

n  A 100-stage Lattice filter

2-Slow Lattice Filter

What is the critical path?

10

n  Retimed version

Critical path=2 multiplier + 2 adder
If Tmul=2 ut, Tadd=1ut, then Tclk=6ut, Titer=2*6=12ut
In original filter, Titer=105

2-Slow Lattice Filter

What is the critical path?

 CSE4210 Architecture & Hardware for DSP

Solving System of
Inequalities

11

Feasible Retiming Solution
n  A solution is feasible if all wr(e) ≥ 0, i.e.
 wr(e)=w(e)+r(V)-r(U) ≥ 0
 à r(U)-r(V)≤w(e) for all edges
Example:

r1-r2 ≤ 0

r3-r1 ≤ 5

r4-r1 ≤ 4

r4-r3≤ -1

r3-r2 ≤ 2

Solving Systems of Inequalities
n  Draw a constraints graph

n  Draw the node i for each of the N variables 1, 2, …, N
n  Draw the node N+1
n  For each inequality ri-rj ≤ k, draw an edge from node j
→ i with weight k

n  For each node i=1,2,..N draw an edge N+1 → i with
weight 0

n  Solve
n  The system has a solution if the constraints graph has

no negative cycle. Bellman Ford Algorithm
n  One solution is the minimum length from node N+1 to

i

12

Activity 1
n  Given the following inequalities, draw the

constraint graph.

r1-r2 ≤ 0

r3-r1 ≤ 5

r4-r1 ≤ 4

r4-r3≤ -1

r3-r2 ≤ 2

 CSE4210 Architecture & Hardware for DSP

Retiming for Clock
Period Minimization

13

Retiming for Clock Period Minimization

n  The minimum clock time is the
computation time of the critical path.

n  Critical path is the path with the longest
computation time and no delay.

n  Retiming could be used to minimize clock
period.

Minimize Clock Period
n  Minimum feasible clock period of a graph

G is Φ(G)=max {t(p): w(p)=0}
n  W(U,V) is the minimum number of

registers on any path from U → V
n  D(U,V) is the maximum computation time

among all paths from U → V with weight
W(U,V)

14

Steps in Minimize Clock Period
1.  Let M=tmaxn , where tmax is the maximum

computation time of any node in G, n =number
of nodes in G

2.  Form a new graph G’ which is the same as G
except the edge weights are replaced by
w’(e)=Mw(e)-t(U) (e=U → V), where t(U) is
computation time of node U.

3.  Solve for all-pairs shortest path on G’ (SUV)
4.  If U ≠ V, then W(U,V)= ⎡SUV/M⎤ and

D(U,V)=M×W(U,V)-SUV+t(V). ⎡X⎤ denotes the
smallest integer not less than X.

5.  If U=V, W(U,V)=0, D(U,V)=t(U)

Steps in Minimize Clock Period
6. Use W(U,V), D(U,V) to find if there a retiming

solution such that Φ(G) ≤ c (cycle time).
This is done by constructing the following set of
constraints
n  Feasibility constraints
r(U)-r(V) ≤ w(e) for every edge in G
n  Critical path constraint
r(U)-r(V) ≤ W(U,V)-1 for all nodes U,V in G such that
D(U,V)>c .
n  If there is a solution to the inequalities (constraints),

then the solution is a feasible retiming solution that the
circuit can be clocked with period c.

15

Example

7 7

15

(1)

(1)

(2)

(2)

Step 1: find M

n=4, tmax=2

M=2*4=8

-2

-2

1

D D

2D

(1)

(1)

(2)

(2) 2

4

3

1

2 3

4

y(n)=ay(n-2) + by(n-3) +x (n)

Step 2: form new graph G’

e = U → V

w’(e)=M × w(e)-t(U)

2×8 -1=15

2×0 -2=-2

SUV 1 2 3 4
1 12 5 7 15

2 7 12 14 22

3 5 -2 12 20

4 5 -2 12 20

7 7

15

(1)

(1)

(2)

(2)

-2

-2

1

2 3

4

Example
Step 3: Solve all shortest path on G’

16

D(U,V) 1 2 3 4
1 1 4 3 3

2 2 1 4 4

3 4 3 2 6

4 4 3 6 2

W(U,V) 1 2 3 4
1 0 1 1 2

2 1 0 2 3

3 1 0 0 3

4 1 0 2 0

U ≠ V, then W(U,V)= ⎡SUV/M⎤

U=V, W(U,V)=0

D(U,V)=M×W(U,V)-SUV+t(V)
U=V T(U)

Example
Steps 4 and 5:
Construct tables for
W(U,V) and D(U,V)

SUV 1 2 3 4
1 12 5 7 15

2 7 12 14 22

3 5 -2 12 20

4 5 -2 12 20

Example

r(1)-r(3) ≤ 1
r(1)-r(4) ≤ 2
r(2)-r(1) ≤ 1
r(3)-r(2) ≤ 0
r(4)-r(2) ≤ 0

Step 6: Construct constraints, for c=3

  Feasibility constraints

D D

2D

(1)

(1)

(2)

(2) 2

4

3

1

17

r(1)-r(2) ≤ 0
r(2)-r(3) ≤ 1
r(2)-r(4) ≤ 2
r(3)-r(1) ≤ 0
r(3)-r(4) ≤ 2
r(4)-r(1) ≤ 0
r(4)-r(3) ≤ 1

Critical path constraints

D(U,V) 1 2 3 4
1 1 4 3 3

2 2 1 4 4

3 4 3 2 6

4 4 3 6 2

r(U)-r(V) ≤ W(U,V)-1 for all
nodes U,V in G
such that D(U,V)>3

W(U,V) 1 2 3 4
1 0 1 1 2

2 1 0 2 3

3 1 0 0 3

4 1 0 2 0

Example

Example
n  Combine two sets of constraints, we have

12 inequalities.
n  Note that there is no overlap between these

two sets of constraints
 Feasibility constraint

r(1)-r(3) ≤ 1
r(1)-r(4) ≤ 2
r(2)-r(1) ≤ 1
r(3)-r(2) ≤ 0
r(4)-r(2) ≤ 0

Critical path constraint
r(1)-r(2) ≤ 0
r(2)-r(3) ≤ 1
r(2)-r(4) ≤ 2
r(3)-r(1) ≤ 0
r(3)-r(4) ≤ 2
r(4)-r(1) ≤ 0
r(4)-r(3) ≤ 1

18

Example
n  Solve 12 inequalities

n  Construct constraint graph
n  Find weight matrix W of constraint graph, then solve

using Bellman algorithm (Appendix A)

W=[0 1 0 0
 0 0 0 0
 1 1 0 1
 2 2 2 0]

Example
n  Solution from Bellman-Ford algorithm:
n  r(1)=r(2)=r(3)=r(4)=0, no retiming needed.

The graph already has a critical path =3

D D

2D

(1)

(1) (2) 2

4

3

1

(2)

19

r(1)-r(2) ≤ 0
r(2)-r(3) ≤ 1
r(2)-r(4) ≤ 2
r(3)-r(1) ≤ 0
r(3)-r(4) ≤ 2
r(4)-r(1) ≤ 0
r(4)-r(3) ≤ 1
r(1)-r(3) ≤ 0
r(1)-r(4) ≤ 1
r(3)-r(2) ≤ -1
r(4)-r(2) ≤ -1

Critical path constraints

D(U,V) 1 2 3 4
1 1 4 3 3

2 2 1 4 4

3 4 3 2 6

4 4 3 6 2

r(U)-r(V) ≤ W(U,V)-1 for all nodes U,V in G
such that D(U,V)>2

W(U,V) 1 2 3 4
1 0 1 1 2

2 1 0 2 3

3 1 0 0 3

4 1 0 2 0

Redoing for c=2
Feasibility constraint
r(1)-r(3) ≤ 1
r(1)-r(4) ≤ 2
r(2)-r(1) ≤ 1
r(3)-r(2) ≤ 0
r(4)-r(2) ≤ 0

For C=2
n  Solve 12 inequalities

n  Construct constraint graph
n  Find weight matrix W of constraint graph, then solve

using Bellman algorithm (Appendix A)

W=[0 1 0 0
 0 0 -1 -1
 0 0 0 1
 1 2 2 0]

20

For c=2
n  Bellman algorithm gives the following

solution:
 r(2)=0, r(1)=r(3)=r(4)=-1

⊗

⊕
⊕ ⊗D

D

2D

D

(1)

(1) (2)

(2)

D D

2D

(1)

(1)

(2)

(2) 2

4

3

1

à

