CSE4210 Architecture & Hardware for DSP

| Chapter 7

‘ Retiming

Instructor: Prof. Peter Lian

Department of Electrical
Engineering & Computer Science

Lassonde School of Engineering
York University

| Introduction

‘ Retiming is a transformation technique that is
used to change the locations of delay elements
in a circuit without changing its functionality.
Could be considered as a generalization of the
pipelining technique studies in Chapter 6
Pipelining is equivalent to introduce many delays at
the input followed by retiming
Applications
Reduce the number of registers in the circuit
Reduce the critical path of the system
Reduce the power consumption of the circuit
Logic synthesis

| lIR Filter Example

| y(n)=ay(n-2) + by(n-3) +x (n)
x(n) ﬁ y(n) x(n) 9)\ y(n)
t

1 D

'@ 5 @
0@
Critical path = 3 Critical path = 2

w1(n)=ay(n-1)
w2(n)=by(n-2)
y(n)=w(n-1) +x (n)

w(n)=ay(n-1)+by(n-2)
y(n)=w(n-1) +x (n)

| Retiming

| Mapping G to G, (retimed)
U and V are nodes, e is an edge
r(U) is a retiming value
w(e) is the weight of edge e from node U
- Vin graph G
w,(e) is the weight of edge e in from node
U - Vin retimed graph G,
w(e)=w(e)+r(V)-r(U)
A solution is feasible if all w(e) = 0

| Retiming Value r(U)

| Movement of register from input to output or vice
versa does not affect the functionality

Retiming value of node U

RetW}:d
o % BN R " I
_/

Retime by 1, r(u)=1
Example
r(1)=-2 3D

B 0l

| Feasible Solution

| A solution is feasible if all w(e) = 0
w,(e)=w(e)+r(V)-r(U) for edge e=(U,V)
If r(U)<0, r(V)>0, w,(e)>0

If r(U)>0, r(V)<0, w,(e)>0 if [r(U)+r(v)|<w(e)
If r(U)>0, r(V)>0, w.(e)>0 if r(v)>r(U)
If r(U)<0, r(V)<0, w,(e)>0 if [r(U)[>[r(V)]
r(U) <0 r(V) <0
/\ /\
u >V

N~

r(U)>0 r(V)>0

| IIR Filter Example

Retimed

(&)

r(1)=r(3)=r(4)=0 r(2)=1

w,(3——=2) =w(3—>2)+r(2)-r(3)=0+1-0=1
W (4—>2) = w(d——2)+7r(2)-r(4)=0+1-0=1

CSE4210 Architecture & Hardware for DSP

‘ Retiming Properties

| Property |

| The weight of a retimed Path is given by:
w,(p)=w(p)+r(k)—r(0)

p=Vy—=V—=V, -V —=V,

w.(p)=w,(e)+w.(e)+ w.(e_)
w.(p)=w(e,)+r(1)-r(0)+w(e)+r(2)-r(1)---+w(e,) +r(k)-r(k-1)
w,(p)=w(e,)+w(e)+---w(e,_)+r(k)-r(0)

w,(p)=w(p)+r(k)-r(0)

| Properties Il to IV

| Property Il: Retiming does not change the
number of delays in a cycle
This is a special case of Property |, where
V&V
Property lll: Retiming does not alter the
iteration bound in a DFG

Property IV: Adding a constant j to the
retiming value of each node does not
change the mapping from G to G,

CSE4210 Architecture & Hardware for DSP

‘ Retiming Techniques

| Cutset Retiming

‘ Cutset: A set of edges if removed, the graph G is
partitioned into 2 graphs G,,G, .

Cutset retiming is done by adding k delays to all
the edges in the cutset from G, to G,, and
removing k delays from the edges from G, to G,

- mein {w(e)}sks mein {w(e)}

G——G, G,——G

| Example 1

| y(n)=ay(n-2) + by(n-3) +x ()

() (1) Retimed

G1->G2: adding 1D
to 322, 1>4

G2->G1: removing 1D
from 2>1 E

G1->G2: adding 1D
to 322,4->2

G2->G1: removing 1D -
from 2->1

| Cutset Retiming: Pipelining

| Pipelining is a special case where there are no

nodes from G, to G, (no loops).
x(n) X D D

—® @

y(n)
| K-Slow Transformation
Replace each delay with N delays
Example:
J— Clock
(I?KA<| B(l) 0 A0->B0 _
= 1 A1>BH %‘k;zzﬂtt
) 2 A2>B2 -
After 2-slow transformation
- Clock
1)< ‘}\(1) 0 A0->BO
)@9\ ‘)B/l ! Tg=2ut
75 2 A2>B2 T,=2*2ut=4ut
3
4 A4->B4

| K-Slow Transformation

‘ K-slow transformation
Input new samples every alternative cycles
Null operations account for odd clock cycles.
Hardware utilized only 50% time
Combining K-slow with retiming
Hardware utilization = 50%

Hardware can be fully utilized if two independent

operations are available.

b
el T
Ve e\ Ty=1ut
\':)\ - /9/ Tie=2*1ut=2ut
D

| 2-Slow Lattice Filter

‘ A 100-stage Lattice filter

Suge | Stage 2 Stage 100
In —(F) peeee () » - ’ -
- ‘ i‘{ i \-4\ |/7.(/)_(\, I
-/_/\/ \)(A_‘/ oy D
/ ’:Q\ SR) |
Ounte (| % D +(_f< S — D ‘_E/

What is the critical path?

In #’T . “ee SN -
\'*\ \‘ & \'X." —‘
] 4
& A2
"." l\)(\» J
u\«{g »a) ---721)(.6‘2 N

The 2-slow version

5

>,

Oure—{+ 3 S

| 2-Slow Lattice Filter

| Retimed version

Stage 1 Stage 2 Swuge 100

Critical path=2 multiplier + 2 adder
If =2 ut, T gq=1ut, then T, =6ut, T
In original filter, T, =105

=2%6=12ut

iter

ter

CSE4210 Architecture & Hardware for DSP

‘ Solving System of
Inequalities

10

| Feasible Retiming Solution

| A solution is feasible if all w(e) = 0, i.e.
w.(e)=w(e)+r(V)-r(U) =0
-2 r(U)-r(V)<w(e) for all edges

Example: Fper, < 0

r;-r; <5
1,1, <4
I'4-I'3S —1

31, <2

| Solving Systems of Inequalities

| Draw a constraints graph
Draw the node i for each of the N variables 1, 2, ..., N
Draw the node N+1
For each inequality r-r; < k, draw an edge from node |j
— i with weight k
For each node i=1,2,..N draw an edge N+1 — i with
weight 0

Solve

The system has a solution if the constraints graph has
no negative cycle. Bellman Ford Algorithm

One solution is the minimum length from node N+1 to
[

11

| Activity 1

‘ Given the following inequalities, draw the
constraint graph.

r,-1,=<0
r;-r; <5
1,1, <4
r,Iy= -1

I3, <2

CSE4210 Architecture & Hardware for DSP

Retiming for Clock
Period Minimization

12

IRetiming for Clock Period Minimization

| The minimum clock time is the
computation time of the critical path.

Critical path is the path with the longest
computation time and no delay.

Retiming could be used to minimize clock
period.

| Minimize Clock Period

| Minimum feasible clock period of a graph
G is ®(G)=max {t(p): w(p)=0}
W(U,V) is the minimum number of
registers on any path from U — V

D(U,V) is the maximum computation time
among all paths from U — V with weight
W(U,V)

13

| Steps in Minimize Clock Period

| 1. Let M=t__n,wheret,, is the maximum

computation time of any node in G, n =number
of nodes in G

2. Form a new graph G’ which is the same as G

except the edge weights are replaced by

w’(e)=Mw(e)-t(U) (e=U — V), where t(U) is

computation time of node U.

Solve for all-pairs shortest path on G’ (S,

4. If U=V, then WU,V)=[S,/M] and
D(U,V)=MxW(U, V)-S,+(V). [X] denotes the
smallest integer not less than X.

5. If U=V, W(U,V)=0, D(U,V)=t(U)

w

| Steps in Minimize Clock Period

| 6. Use W(U,V), D(U,V) to find if there a retiming
solution such that @(G) =< c (cycle time).

This is done by constructing the following set of
constraints
Feasibility constraints
r(U)-r(V) = w(e) for every edge in G
Critical path constraint
rn(U)-n(\V) = W(U, V)-1 for all nodes U,V in G such that
D(U,V)>c .
If there is a solution to the inequalities (constraints),

then the solution is a feasible retiming solution that the
circuit can be clocked with period c.

14

| Example

‘ Step 1: find M
n=4,t 2

max™—

M=2*4=8

y(n)=ay(n-2) + by(n-3) +x (n)

Step 2: form new graph G’
e=U—-V
w’(e)=M x w(e)-t(U)

| Example

‘ Step 3: Solve all shortest path on G’

Suv|1 2 4
1 [12|5 |7 |15
2 |7 |12 |14 |22
3 |5 |2 [12]20
4 |5 |2 12|20

15

Example Soy

112 4
1 125 |7 |15
Steps 4 and 5:
Construct tables for 2 |7 (12|14)22
U =V, then W(U,V)= [SUV/M] 4 |5 |2 12120
U=V, MU, V)=0 DU VY=MxI(U, V)-Sy +1(V)
wuY) (1 [2 [3 |4 v e
1 0o 1 |1 |2 DUV) (112 13 14
2 110 |2 |3 1 114 |3 |3
3 1 10 [0 |3 2 2 (1 |4 |4
4 110 [2 |0 3 4 |3 (2 |6
4 4 |3 (6 |2
| Example
‘ Step 6: Construct constraints, for c=3
» Feasibility constraints
r(1)-r(3) < 1 (1)
r(1)-r(4) < 2
r2)-r(1) < 1 D
r@3)r(2)<0 1)) \op

r(4)-r(2) < 0

)

16

Example

Critical path constraints
r(U)-r(v) = W(U,V)-1 for all
nodes U,Vin G
such that D(U,V)>3

r(1)-r(2)<0

r(2)-r(3) < 1

r(2)-r(4) < 2 DUV) |1 3|4 WUV 1112 |3 |4

r(3)-r(1)<0 1 114 |3 |3 1 0 |1 (1 |2

r(3)-r(4) < 2

(1) = 0 2 2 |1 |4 |4 2 110 (2 |3

r(4)-r(3) = 1 3 4 |3 |2 |6 3 1 /0 (0 |3
4 413 (612 | |4 110 |2 |0

| Example

Combine two sets of constraints, we have
12 inequalities.

Note that there is no overlap between these
two sets of constraints

Feasibility constraint Critical path constraint

r(1)-r(3) < 1 r(1)-r(2) <
r(1)-r(4) <2 r(2)-r(3) =
r(2)-r(1) = 1 r(2)-r(4) <2
r(3)-r(2) < r(3)-r(1) <0
r(4)-r(2) < 0 r(3)-r(4) <2
r(4)-r(1) <0
r(4)-r(3) = 1

17

| Example

| Solve 12 inequalities
Construct constraint graph

Find weight matrix W of constraint graph, then solve
using Bellman algorithm (Appendix A)

W=[0100
0000
1101
2220]

| Example

| Solution from Bellman-Ford algorithm:
r(1)=r(2)=r(3)=r(4)=0, no retiming needed.
The graph already has a critical path =3

18

| Redoing for c=2

| Critical path constraints Feasibility constraint

r(U)-r(V) = W(U,V)-1 for all nodes U,Vin G r(1)-r(3) < 1
such that D(U,V)>2 r(1)-r(4) < 2

r(2)-r(1) < 1
r(1)-1(2) < 0 (3)r(2) <0
r(2)-1(3) = 1 (4)r2) =0
r2)-r(4) <2
r@3)-r(1)<0 D(U,V) W(U,V)
r(3)-r(4) =2 1 34 112 13 14
rayr(1)y<o |1 T4 1303 | |1 011 1 |2
r(4)-r(3) = 1 2 |1 |4 |4 110 |2 |3
r(1)-r(3) <0 2 2
r()r4)<1 |3 41312 16 |13 10103
r(3)-r(2) = -1 413 |6 |2 1 (0 (2 |0
r(4)-r(2) < -1 4 4

| For C=2

| Solve 12 inequalities
Construct constraint graph

Find weight matrix W of constraint graph, then solve
using Bellman algorithm (Appendix A)

W=[01 0 0
00 -1-1
00 01
12 2 0]

19

|Forc=2

| Bellman algorithm gives the following
solution:

r(2)=0, r(1)=r(3)=r(4)=-1

20

