| Dataflow Testing

Chapter 10

Dataflow Testing

= Testing All-Nodes and All-Edges in a control flow graph
may miss significant test cases

= Testing All-Paths in a control flow graph is often too time-
consuming

= Can we select a subset of these paths that will reveal the
most faults?

= Dataflow Testing focuses on the points at which variables
receive values and the points at which these values are
used

DFT-2

Concordances

= Data flow analysis is in part based concordance analysis
such as that shown below — the result is a variable cross-
reference table

18 beta < 2

25 alpha < 3 x gamma + 1

51 gamma < gamma + alpha - beta
123 beta < beta + 2 x alpha
124 beta < gamma + beta + 1

Defined Used
alpha 25 51,123
beta 18, 123, 124 51,123, 124
gamma 51 25, 51,124

DFT-3

Dataflow Analysis

= Can reveal interesting bugs
= A variable that is defined but never used
= A variable that is used but never defined
= A variable that is defined twice before it is used

= Sending a modifier message to an object more than
once between accesses

= Deallocating a variable before it used

« Container problem - deallocating container loses
references to items in the container, memory leak

DFT—4

Dataflow Analysis — 2

= The bugs can be found from a cross-reference table using
static analysis

s Paths from the definition of a variable to its use are more
likely to contain bugs

DFT-5

Definitions

= A node n inthe program graph is a defining node for
variable v — DEF(v, n) — if the value of v is defined at the
statement fragment in that node

= Input, assignment, procedure calls

= A node in the program graph is a usage node for variable
v — USE(v, n) — if the value of v is used at the statement
fragment in that node

= Output, assignment, conditionals

DFT-6

Definitions — 2

= In languages without garbage collection

= A node in the program is a Kill node for a variable v —
KILL(v, n) —if the variable is deallocated at the
statement fragment in that node.

= A usage node is a predicate use, P-use, if variable v
appears in a predicate expression

= Always in nodes with outdegree = 2

= A usage node is a computation use, C-use, if variable v
appears in a computation

= Always in nodes with outdegree < 1

DFT-7

Definitions — 3

= A definition-use path, du-path, with respect to a variable
v is a path whose first node is a defining node for v, and
its last node is a usage node for v

= A du-path with no other defining node for v is a definition-
clear path, dc-path

DFT-8

Example 1 — Max program

int max = 0; ~

1
int J = s.nextInt();
3 while (5> 0) - I
oo P Acuseorj
5 max = J;
6 }
7 jJ = s.nextInt();
ACumeormax VT Adetmitoner
9 System.out.println(max);

DFT-9

Example 2 — Billing program

calculateBill (usage : INTEGER) : INTEGER
double bill = 0;

if usage > 0 then bill = 40 fi
if usage > 100
then if usage = 200

then bill = bill + (usage - 100) *0.5

else bill = bill + 50 + (usage — 200) * 0.1

if bill = 100 then bill = bill * 0.9 fi
fi

fi

rern bill = ~ Kill node for bill
end

DFT-10

Max program — analysis

int j

A int max = 0;

= s.nextInt();

Legend

A..F Segment name

d defining node for j
u use node for j

while (j > 0) |

u
c if (j > max)

D ¥ u

max = j;

j = s.nextInt();

System.out.println(max);

dc-paths j
AB
ABC
ABCD
EB
EBC
EBCD

dc-paths max
ABF
ABC
DEBC
DEBF

DFT-11

Dataflow Coverage Metrics

s Based on these definitions we can define a set of
coverage metrics for a set of test cases

= We have already seen
= All-Nodes
= All-Edges
« All-Paths

= Data flow has additional test metrics for a set T of paths in
a program graph

= All assume that all paths in T are feasible

DFT-12

All-Defs Criterion

s The set T satisfies the All-Def criterion

= For every variable v, T contains a dc-path from every
defining node for v to at least one usage node for v

= Not all use nodes need to be reached

Vve V(P),nd € prog grap/(P)| DEF(v, nd)
*dnu € prog graph(P)|USE(v,nu)® de path(nd, nu)e I’

DFT-13

All-Uses Criterion

s | he set T satisfies the All-Uses criterion iff

= For every variable v, T contains dc-paths that start at
every defining node for v, and terminate at every usage

node for v

= Not DEF(v, n) x USE(v, n) — not possible to have a
dc-path from every defining node to every usage
node

Nve V(P), nu < prog graph(P)|USE(v, nu)
dnd € prog graph(P)|DEF(v,nd) dc path(nd,nu) € T
A

all defs criterion

DFT-14

All-P-uses / Some-C-uses

s The set T satisfies the All-P-uses/Some-C-uses criterion iff

= For every variable v in the program P, T contains a dc-
path from every defining node of v to every P-use node

for v

« If a definition of v has no P-uses, a dc-path leads to
at least one C-use node for v

Nve V(P), nuc prog graph(P)| P use(v,nu)
dnd € prog graph(P)|DEF(v,nd) dc path(nd,nu) € 7T
A

all defs criterion

DFT-15

All-C-uses / Some-P-uses

s T he test set T satisfies the All-C-uses/Some-P-uses
criterion iff

= For every variable v in the program P, T contains a dc-
path from every defining node of v to every C-use of v

« If a definition of v has no C-uses, a dc-path leads to
at least one P-use

Nve V(P), nu <€ prog graph(P)|C use(v, nu)
dnd € prog graph(P)|DEF(v,nd) dc path(nd,nu) € 7T
A

all defs criterion

DFT-16

Miles-per-gallon Program

miles_per_gallon (miles, gallons, price : INTEGER)
if gallons = 0 then

/ |/ Watch for division by zero!!

Print(“You have “ + gallons + “gallons of gas”)
else if miles/gallons > 25

then print(“Excellent car. Your mpg is “
+ miles/gallon)

else print(“You must be going broke. Your mpg is
+ miles/gallon + “ cost “ + gallons * price)

fi
end

DFT-17

Example du-paths

= For each variable in the miles_per_gallon program see the
test paths for the following dataflow path sets

s All-Defs (AD)

= All-C-uses (ACU)

s All-P-uses (APU)

= All-C-uses/Some-P-uses (ACU+P)
s All-P-uses/Some-C-uses (APU+C)

s All-uses

DFT-18

Mile-per-gallon Program — Segmented

gasguzzler (miles, gallons, price : INTEGER) A
if gallons = 0 then B
/ |/ Watch for division by zero!! C
Print(“You have “ + gallons + “gallons of gas”)
else if miles/gallons > 25 D
then print(“Excellent car. Your mpg is “ E
+ miles/gallon)
else print(“You must be going broke. Your mpgis“ | F
+ miles/gallon + “ cost “ + gallons * price)
fi G
end

DFT-19

MPG program graph

Def miles, A
gallons
C-use gallons
P-use T — C
gallons
F C-use miles, gallons
E G

P-use T -
miles,
gallons

Possible F— F

C-use miles, gallons
But not common
practice

C-use miles, gallons, price

DFT-20

MPG — DU-Paths for Miles

= All-Defs

s Each definition of each variable for at least one use of
the definition

=« ABD
s All-C-uses

= At least one path of each variable to each c-use of the
definition
« ABDE ABDF ABD

s All-P-uses

= At least one path of each variable definition to each p-
use of the definition

« ABD

DFT-21

MPG — DU-Paths for Miles — 2

s All-C-uses/Some-P-uses

= At least one path of each variable definition to each c-
use of the variable. If any variable definitions are not
covered use p-use

« ABDE ABDF ABD

s All-P-uses/Some-C-uses

= At least one path of each variable definition to each p-

use of the variable. If any variable definitions are not
covered use c-use

« ABD

= All-uses
= At least one path of each variable definition to each p-
use and each c-use of the definition

« ABD ABDE ABDF
DFT-22

MPG — DU-Paths for Gallons

= All-Defs

s Each definition of each variable for at least one use of
the definition

«= AB
s All-C-uses

= At least one path of each variable to each c-use of the
definition
« ABC ABDE ABDF ABD

s All-P-uses

= At least one path of each variable definition to each p-
use of the definition

« AB ABD

DFT-23

MPG — DU-Paths for Gallons — 2

s All-C-uses/Some-P-uses

= At least one path of each variable definition to each c-
use of the variable. If any variable definitions are not
covered use p-use

« ABC ABDE ABDF ABD

s All-P-uses/Some-C-uses

= At least one path of each variable definition to each p-

use of the variable. If any variable definitions are not
covered use c-use

« AB ABD

= All-uses
= At least one path of each variable definition to each p-
use and each c-use of the definition

«- AB ABC ABD ABDE ABDF
DFT-24

MPG — DU-Paths for Price

= All-Defs

s Each definition of each variable for at least one use of
the definition

= ABDF
s All-C-uses

= At least one path of each variable to each c-use of the
definition
« ABDF

s All-P-uses

= At least one path of each variable definition to each p-
use of the definition

= hone

DFT-25

MPG — DU-Paths for Price — 2

s All-C-uses/Some-P-uses

= At least one path of each variable definition to each c-
use of the variable. If any variable definitions are not
covered use p-use

« ABDF

s All-P-uses/Some-C-uses

= At least one path of each variable definition to each p-

use of the variable. If any variable definitions are not
covered use c-use

« ABDF

s All-uses

= At least one path of each variable definition to each p-
use and each c-use of the definition

« ABDF
DFT-26

-

All-Paths

\ 4

All-DU-Paths

\ 4

All-Uses

T~

Rapps-Weyuker data flow hierarchy

All-C-uses
Some-P-uses

All-P-uses
Some-C-uses

All-Defs

~N.

AN

All-P-uses

!

All-Edges

\ 4

All-Nodes

DFT-27

Potential Anomalies

Data flow node combinations for a variable

Anomalies Explanation

~d first define Allowed

du define-use Allowed - normal case
dk define-kill Potential bug

~ U first use Potential bug

ud use-define Allowed - redefined
uk use-kill Allowed

~ K first kill Potential bug

ku kill-use Serious defect

DFT-28

Potential Anomalies — 2

Anomalies Explanation

kd kill-define Allowed - redefined
dd define-define | Potential bug

uu use-use Allowed - normal case
Kk Kill-kill Potential bug

d~ define last Potential bug

U~ use last Allowed

K ~ Kill last Allowed - normal case

DFT-29

Data flow guidelines

= Data flow testing is good for computationally/control
intensive programs

= If P-use of variables are computed, then P-use data
flow testing is good

= Define/use testing provides a rigorous, systematic way to
examine points at which faults may occur.

DFT-30

Data flow guidelines — 2

= Aliasing of variables causes serious problems!

= Working things out by hand for anything but small
methods is hopeless

= Compiler-based tools help in determining coverage values

DFT-31

