
Integration Testing
Functional Decomposition Based

Chapter 13

IntF–2

Integration Testing

 Test the interfaces and interactions among separately
tested units

 Three different approaches
 Based on functional decomposition
 Based on call graphs
 Based on paths

IntF–3

Functional Decomposition

 Functional Decomposition
 Create a functional hierarchy for the software
 Problem is broken up into independent task units, or

functions
 Units can be run either

 Sequentially and in a synchronous call-reply
manner

 Or simultaneously on different processors

 Used during planning, analysis and design

IntF–4

SATM Units

1 1 SATM system
A 1.1 Device sense & control
D 1.1.1 Door sense & control
2 1.1.1.1 Get door status
3 1.1.1.2 Control door
4 1.1.1.3 Dispense cash
E 1.1.2 Slot sense & control
5 1.1.2.1 Watch card slot
6 1.1.2.2 Get deposit slot status
7 1.1.2.3 Control card Roller
8 1.1.2.4 Control Envelope Roller
9 1.1.2.5 Read card strip
10 1.2 Central bank comm.
11 1.2.1 Get PIN for PAN
12 1.2.2 Get account status
13 1.2.3 Post daily transactions
B 1.3 Terminal sense & control

14 1.3.1 Screen door
15 1.3.2 Key sensor
C 1.4 Manage session
16 1.4.1 Validate card
17 1.4.2 Validate PIN
18 1.4.2.1 Get PIN
F 1.4.3 Close session
19 1.4.3.1 New transaction request
20 1.4.3.2 Print receipt
21 1.4.3.3 Post transaction local
22 1.4.4 Manage transaction
23 1.4.4.1 Get transaction type
24 1.4.4.2 Get account type
25 1.4.4.3 Report balance
26 1.4.4.4 Process deposit
27 1.4.4.5 Process withdrawal

Unit Level Name Unit Level Name

IntF–5

Functional Decomposition of the SATM System

1

A 10 B

D E 11 12 13 14 15

2 3 4 5 6 7 8 9

C

16 17 F 22

18 19 20 21 23 24 25 26 27

Table 1: SATM Units and Abbreviated Names
Unit Level Unit Name
1! 1! SATM System
A! 1.1! Device Sense & Control
D! 1.1.1! Door Sense & Control
2! 1.1.1.1 ! Get Door Status
3! 1.1.1.2 ! Control Door
4! 1.1.1.3 ! Dispense Cash
E! 1.1.2! Slot Sense & Control
5! 1.1.2.1 ! WatchCardSlot
6! 1.1.2.2 ! Get Deposit Slot Status
7! 1.1.2.3 ! Control Card Roller
8! 1.1.2.3 ! Control Envelope Roller
9! 1.1.2.5 ! Read Card Strip
10! 1.2! Central Bank Comm.
11! 1.2.1! Get PIN for PAN
12! 1.2.2! Get Account Status
13! 1.2.3! Post Daily Transactions

Unit Level Unit Nam
B! 1.3! Terminal Sense & Control
14! 1.3.1! Screen Driver
15! 1.3.2! Key Sensor
C! 1.4! Manage Session
16! 1.4.1 ! Validate Card
17! 1.4.2! Validate PIN
18! 1.4.2.1 ! GetPIN
F! 1.4.3 ! Close Session
19! 1.4.3.1 ! New Transaction Request
20! 1.4.3.2 ! Print Receipt
21! 1.4.3.3 ! Post Transaction Local
22! 1.4.4! Manage Transaction
23! 1.4.4.1 ! Get Transaction Type
24! 1.4.4.2 ! Get Account Type
25! 1.4.4.3 ! Report Balance
26! 1.4.4.4 ! Process Deposit
27! 1.4.4.5 ! Process Withdrawal

SATM functional decomposition tree

IntF–6

Decomposition-based integration strategies

 What are the decomposition-based integration
strategies?

IntF–7

Decomposition-based integration strategies – 2

 Top-down

 Bottom-up

 Sandwich

 Big bang

IntF–8

Big bang integration process

 What is the big bang integration process.

IntF–9

Big bang integration process – 2

 All units are compiled together

 All units are tested together

IntF–10

Big bang integration issues

 What are the issues (advantages and drawbacks)?

IntF–11

Big bang integration issues – 2

 Failures will occur!

 No clues to isolate location of faults

 No stubs or drivers to write

IntF–12

Top-down integration

 What is the top-down integration process?

IntF–13

Top Subtree
Sessions 1-4

Second Level Subtree
Sessions 5-8

Bottom Level Subtree
 Sessions 9-13

Top-Down integration example

IntF–14

Top-Down integration process

 Strategy
 Focuses on testing the top layer or the controlling

subsystem first
 The main, or the root of the call tree

 General process is
 To gradually add more subsystems that are

referenced/required by the already tested subsystems
when testing the application

 Do this until all subsystems are incorporated into the
test

IntF–15

Top-Down integration process – 2

 Stubs are needed to do the testing

 A program or a method that simulates the input-output
functionality of a missing subsystem by answering to
the decomposition sequence of the calling subsystem
and returning back simulated data

IntF–16

Top-Down integration issues

 What are the issues?

IntF–17

Top-Down integration issues – 2

 Writing stubs can be difficult
 Especially when parameter passing is complex.
 Stubs must allow all possible conditions to be tested

 Possibly a very large number of stubs may be required
 Especially if the lowest level of the system contains

many functional units

IntF–18

Top-Down integration issues – 3

 One solution to avoid too many stubs
 Modified top-down testing strategy

 Test each layer of the system decomposition
individually before merging the layers

 Disadvantage of modified top-down testing
 Both stubs and drivers are needed

IntF–19

Bottom-up integration

 What is the bottom-up integration process?

IntF–20

Bottom-up integration example

Top Subtree
Sessions 10-13

Second Level Subtree
Sessions 6-9

Bottom Level Subtree
Sessions 1-5

IntF–21

Bottom-Up integration process

 Bottom-Up integration strategy
 Focuses on testing the units at the lowest levels first

 Gradually includes the subsystems that
reference/require the previously tested subsystems

 Do until all subsystems are included in the testing

IntF–22

Bottom-Up integration process – 2

 Drivers are needed to do the testing

 A driver is a specialized routine that passes test cases
to a subsystem

 Subsystem is not everything below current root
module, but a sub-tree down to the leaf level

IntF–23

Bottom-up integration issues

 What are the issues?

IntF–24

Bottom-Up Integration Issues

 Not an optimal strategy for functionally decomposed
systems
 Tests the most important subsystem (user interface)

last

 More useful for integrating object-oriented systems

 Drivers may be more complicated than stubs

 Less drivers than stubs are typically required

IntF–25

Sandwich integration

 What is the sandwich integration process?

IntF–26

Sandwich integration example

Sandwich 1
Sessions 1-3

Sandwich 2
Sessions 4-13

Sandwich 3
Sessions 14-15

IntF–27

Sandwich integration process

 Combines top-down strategy with bottom-up strategy

 Doing big bang on a subtree

IntF–28

Sandwich integration issues

 What are the issues?

IntF–29

Sandwich integration issues – 2

 Less stub and driver development effort

 Added difficulty in fault isolation

IntF–30

Integration test session

 A session is a test suite that tests one edge in the tree
 Each session tests the combining of two parts

 This is different from the textbook

#sessions = #edges

#sessions = #nodes – #leaves + #edges
 = 2 #edges – #leaves + 1

Alternately

#sessions = #internal_nodes + #edges

IntF–31

Integration work numbers

 For top-down integration
 #nodes – 1 = #edges stubs are needed

 For bottom-up integration
 #nodes – #leaves = #internal_nodes

drivers are needed

 The number integrated units for top-down and bottom-up

#integrated_units = #internal_nodes

IntF–32

Integration work numbers

 For SATM have 32 integration test sessions
 Correspond to 32 separate sets of test cases

 For top-down integration
 32 stubs are needed

 For bottom-up integration
 10 drivers are needed

 For top-down and bottom-up
 10 integration units

IntF–33

Decomposition-based drawback

 What is the major drawback of decomposition-based
integration?

IntF–34

Decomposition-based drawback – 2

 It is functionally based
 Has the problems of all functional testing

 How do we overcome the problems?

IntF–35

Decomposition-based drawback – 3

 It is functionally based
 Has the problems of all functional testing

 How do we overcome the problems?
 Move to structural-based testing

