
Integration Testing 
Path Based"

Chapter 13!

IntP–2

Call graph based integration"

  Use the call graph instead of the decomposition tree!

  What is a call graph?!

IntP–3

Call graph definition"

  Is a directed, labeled graph!
  Vertices are methods  
"

  A directed edge joins calling vertex to the called
vertex  
"

  Adjacency matrix is also used 
"

  Does not scale well, although some insights are useful"
  Nodes of high degree are critical"

IntP–4

SATM call graph example"

1
5

7

20

21

9

10

12

11

16

17 18 19

22

23
24

25
26

14 2 36 8

4

13

15

27

Call Graph of the SATM System

Look at adjacency  
matrix p204"

IntP–5

Call graph integration strategies"

  What types of integration strategies are used?!

IntP–6

Call graph integration strategies – 2"

  Pair-wise Integration Testing!

  Neighborhood Integration Testing !

IntP–7

Pair-wise integration"

  What is pair-wise integration!

IntP–8

Some Pair-wise Integration Sessions

1
5

7

20

21

9

10

12

11

16

17 18 19

22

23
24

25
26

14 2 36 8

4

13

15

27

Pair-wise integration session example"

IntP–9

Pair-wise integration – 2"

  The idea behind Pair-Wise integration testing  
!
  Eliminate need for developing stubs / drivers  
"

  Use actual code instead of stubs/drivers"

IntP–10

Pair-wise integration – 3"

  In order not to deteriorate the process to a big-bang
strategy 
!
  Restrict a testing session to just a pair of units in the

call graph  
"

  Results in one integration test session for each edge
in the call graph "

IntP–11

Neighbourhood integration"

  What is neighbourhood integration?!

IntP–12

1
5

7

20

21

9

10

12

11

16

17 18 19

22

23
24

25
26

14 2 36 8

4

13

15

27

Two Neighborhood Integration SessionsNeighbourhood integration example "

Neighbourhoods  
for nodes 16 & 26"

IntP–13

Neighbourhood integration – 2"

  The neighbourhood of a node in a graph!
  The set of nodes that are one edge away from the

given node 
"

  In a directed graph!
  All the immediate predecessor nodes and all the

immediate successor nodes of a given node"

IntP–14

Neighbourhood integration – 3"

  Neighborhood integration testing  
!
  Reduces the number of test sessions  
"

  Fault isolation is difficult"

IntP–15

Pros of call-graph integration"

  What are the pros of call-graph integration?!

!

IntP–16

Pros of call-graph integration – 2"

  Reduces the need for drivers and stubs!
  Relative to functional decomposition integration 
"

  Neighborhoods can be combined to create “villages”!

  Closer to a build sequence!
  Well suited to devising a sequence of builds with

which to implement a system  
"

IntP–17

Cons of call-graph integration"

  What are the cons of call-graph integration?!

!

IntP–18

Cons of call-graph integration – 2"

  Suffers from fault isolation problems!
  Especially for large neighborhoods  
"

  Redundancy!
  Nodes can appear in several neighborhoods  
"

  Assumes that correct behaviour follows from correct
units and correct interfaces!
  Not always the case"

!

IntP–19

Path-based integration"

  What is path-based integration?"

  Why use it?!

IntP–20

Path-Based Integration – 2"

  Motivation!
  Combine structural and behavioral type of testing for

integration testing as we did for unit testing 
"

  Basic idea!
  Focus on interactions among system units"
  Rather than merely to test interfaces among

separately developed and tested units  
"

  Interface-based testing is structural while interaction-
based testing is behavioral!

IntP–21

Source node"

  What is it? "

IntP–22

Source node – 2"

  A program statement fragment at which program
execution begins or resumes. 
!
  For example the first “begin” statement in a program. 
"

  Nodes immediately after nodes that transfer control to
other units. "

IntP–23

Sink node"

  What is a sink node? !

IntP–24

Sink node"

  A statement fragment at which program execution
terminates 
 !
  The final “end” in a program as well as statements

that transfer control to other units"

IntP–25

Module execution path (MEP)"

  What is a module execution path? !

IntP–26

Module execution path (MEP) – 2"

  A sequence of statements within a module that!
  Begins with a source node  
"

  Ends with a sink node  
"

  With no intervening sink nodes "

IntP–27

Message"

  What is a message? !

IntP–28

Message – 2"

  A programming language mechanism by which one unit
transfers control to another unit 
!

  Usually interpreted as subroutine / function invocations 
!

  The unit which receives the message always returns
control to the message source!

IntP–29

MM-path"

  What is an MM-path?"

IntP–30

MM-path – 2"

  A module to module path!
  An interleaved sequence of module execution paths

and messages  
 "

  Used to describes sequences of module execution paths
that include transfers of control among separate units 
!

  MM-paths always represent feasible execution paths,
and these paths cross unit boundaries!

IntP–31

1	

2	

 3	

4	

5	

 6	

A	

B	

1	

2	

3	

4	

C	

1	

2	

5	

3	

4	

MM-path example "

 Source nodes ���
 Sink nodes

MM-path"

MEP(C,1) = <1, 2, 4, 5>"
MEP(C,2) = <1, 3, 4, 5>"

MEP(B,1) = <1, 2> "
MEP(B,2) = <3, 4>"

MEP(A,1) = <1, 2, 3, 6> 
MEP(A,2) = <1, 2, 4> 
MEP(A,3) = <5, 6> "Module Execution Paths"

IntP–32

MEPs and DD-paths"

  What is the correspondence between MEPs and a
DD-paths?!

IntP–33

MEPs and DD-paths – 2"

  There is no correspondence between MM execution
paths and DD-paths!

IntP–34

MEPs and slices"

  What is the correspondence between MEPs and
slices?"

IntP–35

MEPs and slices – 2"

  There is no correspondence but there is an analog  
!
  The intersection of a module execution path with a

unit is the analog of a slice with respect to the MM-
path function"

IntP–36

MM-path graph "

  What is an MM-path graph?"

IntP–37

MM-path graph – 2 "

  Given a set of units their MM-path graph is the directed
graph in which!
  Nodes are module execution paths"
  Edges correspond to messages and returns from one

unit to another  
"

  The definition is with respect to a set of units !
  It directly supports composition of units and

composition-based integration testing "

IntP–38

Solid lines indicate messages (calls) 
Dashed lines indicate returns from calls"

MM-path graph example"

MEP(C,2)"
"

MEP(A,1)"
"

MEP(A,2)"
"

MEP(A,3)"
"

MEP(B,1)"
"

MEP(C,1)"
"

MEP(B,2)"
"

IntP–39

MM-path guidelines"

  How long, or deep, is an MM-path? What determines
the end points?!

  Quiescence points are natural endpoints for MM-paths!
  Message quiescence"
  Data quiescence"

IntP–40

Message quiescence"

  Occurs when a unit that sends no messages is reached!
  Module C in the example"

IntP–41

Data quiescence"

  Occurs when a sequence of processing ends in the
creation of stored data that is not immediately used!
  The causal path Data A has no quiescence"
  The non-causal path D1 and D2 is quiescent at the

node P-1"

IntP–42

MM-path metric"

  What is the minimum number of MM-paths that are
sufficient to test a system?"

IntP–43

MM-Path metric – 2"

  What is the minimum number of MM-paths that are
sufficient to test a system?!
  Should cover all source-to-sink paths in the set of

units  
"

  What about loops? How should they be treated?"

IntP–44

MM-Path metric – 3"

  What is the minimum number of MM-paths that are
sufficient to test a system?!
  Should cover all source-to-sink paths in the set of

units"

  What about loops? How should they be treated?!
  Use condensation graphs to get directed acyclic

graphs"
  Avoids an excessive number of paths"

IntP–45

Pros of path-based integration"

  Benefits of hybrid of functional and structural testing!
  Functional – represent actions with input and output"
  Structural – how they are identified"

  Avoids pitfall of structural testing!
  Unimplemented behaviours cannot be tested 
"

  Fairly seamless union with system testing!

IntP–46

Pros of path-based integration – 2"

  Path-based integration is closely coupled with actual
system behaviour!
  Works well with OO testing 
"

  No need for stub and driver development 
!

IntP–47

Cons of path-based integration"

  There is a significant effort involved in identifying MM-
paths!

IntP–48

MM-path compared to other methods "

Strategy! Ability to test 
interfaces!

Ability to test 
co-functionality!

Fault isolation  
resolution!

Functional
decomposition!

Acceptable, can
be deceptive!

Limited to pairs
of units!

Good to faulty
unit!

Call-graph! Acceptable! Limited to pairs
of units!

Good to faulty
unit!

MM-path! Excellent! Complete! Excellent to unit
path level!

