
Interaction Testing!

Chapter 15!

!

IAT–2!

Interaction faults and failures!

  Subtle!
  Difficult to detect with testing 
!

  Usually seen after systems have been delivered!
  In low probability threads  
!

  Occur after a long time!
  Large numbers of thread executions 
!

  Difficult to reproduce!

IAT–3!

Interaction faults and failures – 2!

  To be able to test interactions need!
  To understand what they are  
!

  Mathematical description!
  Look at requirements specification!

  Concerned with unexpected interactions!

IAT–4!

Context of interaction!

  It is a relationship InteractsWith among!
  Data ! ! Events !  Threads!
  Actions! ! Ports  
!

  The relationship is reflexive  
!

  It is binary relation between!
  Data & events!
  Data & threads!
  Events & threads!

IAT–5!

Context of interaction– 2!

  There are too many relationships to be of direct use!
  Indicates that something is missing!
  In this case location!

  Place and time!

  Select location to be an attribute of the other entities
instead of being a new entity!
  Short coming of requirements to not include it!

IAT–6!

Meaning of the location attribute!

  Place!
  Have a coordinate system  
!

  For software use processor residence!
  Only useful for multi-processor systems!

IAT–7!

Meaning of the location attribute – 2!

  Time!
  An instant!

  When something happens!
  Ask before and after type questions!

  An interval!
  Interested in duration!

IAT–8!

Events & states!

  Textbook has two meanings for event!
  Causes confusion, ambiguity, wordy explanations  
!

  Use two words!
  Use event for instant!
  Use state or activity for duration!

  Occurs between two events!

IAT–9!

Properties of threads and processors!

  Threads have duration!
  They are activities  
!

  At one time a processor can execute only one thread!

IAT–10!

Properties of threads and processors – 2!

  A processor is in a state of executing a thread!
  Timesharing, multiprocessing interleaves thread

execution!
  Processor changes state for each thread 
!

  Here thread durations overlap in time!

IAT–11!

Properties of threads and processors – 3!

  On one processor events can be simultaneous within the
minimum resolution of time-grain markers!
  BUT reality (hardware) puts an order on those events

– puts them in a sequence!
  As far as we can tell it is a random choice  
!

  At another occurrence the events may be ordered
in a different sequence!

  That is an essential difficulty of interaction testing!

IAT–12!

Properties of threads and processors – 4!

  On different processors, events can occur
simultaneously!
  Common events by definition must occur at the same

time!
  Consider a two people colliding – the collision is a

common event to the two people (processors) 
!

  Synchronous communication for processors start and
end with common events!

IAT–13!

Properties of threads and processors – 5!

  For a single processor!
  Input and output events occur during thread execution 
!

  From the perspective of a thread they cannot occur
simultaneously, because they occur at instructions
and instructions are executed sequentially  
!

  From the perspective of devices port events can be
simultaneous!

  For each port events occur in time sequence!

IAT–14!

Properties of threads and processors – 6!

  Threads occur only within one processor!
  Do not cross processor boundaries  
!

  Have trans-processor quiescence when threads reach
processor boundaries!

  Analogous to crossing unit boundaries in
integration testing!

IAT–15!

Properties of threads and processors – 7!

  What we want is sane behaviour!
  This results from considering events to be in a linear

sequence!
  For example synchronous communications takes

into account message transmission time!
  Break the communication into events such as!

  Sender starts sending!
  Receiver starts receiving!
  Sender ends sending!
  Receiver ends receiving!

IAT–16!

Properties of threads and processors – 8!

  For interaction faults and failures need to go down to
this level!

  Implies time-grain markers need to have very fine
resolution!

IAT–17!

Taxonomy of interactions!

  Static interactions in a single processor system!

  Static interactions in multiprocessor system!

  Dynamic interactions in a single processor system!

  Dynamic interactions in multiprocessor system!

IAT–18!

Square of opposition!

  Given two propositions P and Q!
  They are contraries if both cannot be true!
  Sub-contraries if both cannot be false!
  Contradictories if exactly one is true!
  R is a subaltern of P if the truth of P guarantees the

truth of R – i.e. P → R!

IAT–19!

Square of opposition – 2!
U – undetermined!
Arrow is implication!

IAT–20!

Why logic?!

  Consider the following data interactions!
  Precondition for a thread is a conjunction of data

propositions!
  Contrary or contradictory data values prevent

execution!
  Context-sensitive input port events can involve

contradictory or contrary data!
  Case statement clauses, if correct, are contradictories!
  Rules in a decision table, if correct, are

contradictories!

IAT–21!

Static interactions in a single processor!

  Analogous to combinatorial circuits!
  Model with decision tables and unmarked event-driven

Petri nets  
!

  Telephone system example!
  Call display and unlisted numbers are contraries!

  Both cannot be satisfied!
  Both could be waived!

IAT–22!

Static interactions in a multiprocessor!

  Location of data is important 
!

IAT–23!

Telephone example 1!

  Calling party in location of one processor (area)!

  Receiving party in another processor!

  Checking for contrary data such as caller id and unlisted
numbers!
  Can only check when caller and receiver are

connected by a thread!
  A contrary relationship exists as a static interaction

across multiple processors!
  Failure occurs only when the two threads interact!

IAT–24!

Telephone example 2!

  Call forwarding is defined!
  Alice (area 1) has call forwarding to Bob!
  Bob (area 2) has call forwarding to Charlene!
  Charlene(area 3) has call forwarding to Alice!

  The call forwarding data is contrary – cannot all be
true at the same time!

  Have distributed contraries!
  Call forwarding is a property of a local office!
  A thread sets a forwarding location!
  Have a fault but not a failure until Donald places a call

to one of Alice, Bob or Charlene!

IAT–25!

Static interactions summary!

  The same in both single processor and multiprocessor
systems 
!

  More difficult to detect in multiprocessor systems 
!

  Functional dependencies in a database (centralized or
distributed) are static interactions!
  Both are a form of subalternation!

IAT–26!

Graph connectedness for dynamic interactions!

  Make use of n-connectedness in graphs!

IAT–27!

Data-data connectedness – Logical relationships!

  0-connected!
  Logically independent 
!

  2-connected!
  Sub-alternation 
!

  3-connected – bidirectional!
  Contraries!
  Contradictories!
  Sub-contraries!

IAT–28!

Examples!

  1-connected data-data!
  Two or more data items are input to the same

action 
!

  2-connected data-data!
  When a data item is used in a computation!

IAT–29!

Examples – 2!

  3-connected data-data!
  When data are deeply related, as in repetition and

semaphores  
!

  1-connected data-event!
  Context-sensitive port input events!

IAT–30!

Dynamic, single processor interactions!

  Six potential interaction pairs!
  Combination pairs of!

  Data!
  Events!
  Threads 
!

  Each interaction can exhibit 4 different graph
connectedness attributes 
!

  Result is 24 sub-categories for these interactions!

IAT–31!

Dynamic, single processor interactions – 2!

  Do not analyze all possibilities!
  Interaction faults only result in failure when threads

establish a connection 
!

  Thread-thread interaction occurs!
  Through events!
  Through data!

IAT–32!

Petri net external inputs and outputs!

  External inputs!
  Places with in-degree 0!

  Can be port or data pre-condition place  
!

  External outputs!
  Places with out-degree 0!

  Can be port or data post-condition place!
!

For an example!
see Figure 15.5!

IAT–33!

Thread-thread interaction!

  Each thread can be represented by an EDPN  
!

  The symbolic names of the places and transitions
correspond to those in the EDPN for the system!

  Synonyms in thread nets need to be resolved when
they interact!

IAT–34!

Thread-thread interaction – 2!

  Threads only interact through external input and output
events!

  The intersection of the external input and output
places for the threads indicates where they interact
with each other!

For an example!
see Figures 15.6 & 15.7!

IAT–35!

Thread-thread interaction – 3!

  External events always remain external  
!

  External data may become internal!
  Output of one thread is input to another!

  Call forwarding !

IAT–36!

Thread-thread connectedness definition!

  T1 and T2 are threads where EI1, EI2, EO1 and EO2
are the external inputs and outputs of the threads!
  0-connected!

  EI1 ∩ EI2 = ∅ ∧ EO1 ∩ EO2 = ∅  
EO2 ∩ EI1 = ∅ ∧ EO1 ∩ EI2 = ∅!

  1-connected!
  EI1 ∩ EI2 ≠ ∅ ⊕ EO1 ∩ EO2 ≠ ∅!

  2-connected – only through data places!
  EO1 ∩ EI2 ≠ ∅ ⊕ EI1 ∩ EO2 ≠ ∅!

  3-connected – only through data places!
  EO1 ∩ EI2 ≠ ∅ ∧ EI1 ∩ EO2 ≠ ∅!

IAT–37!

Directed thread graph!

  A directed thread graph can be constructed!
  Nodes are threads!

  External inputs & outputs are not in the node!
  They remain external to the node. 
!

  Edges connect threads according to the external
common input & output ports, and common data
places!

  Figure 15.8 is an example made from Figure 15.7  
!

  Can see connectedness relationships!

IAT–38!

1-connected threads!

  1-connected threads from input places are the typical
case for Petri-net mutual exclusion!
  A token on the common input is consumed by one of

the threads and other cannot proceed 
!

  1-connected threads to output places have an ambiguity!
  We do not know which thread produced an output

token!
  Can occur from unexpected thread interaction

where some threads completed execution earlier!

For an example!
see Figure 15.7!

IAT–39!

2- and 3-connected threads!

  Can only occur with data places!

  Port places cannot be both input an output!

  Note some devices may have both input and output
capability but we always split into independent
input and output logical devices!

IAT–40!

2- and 3-connected threads – 2!

  Problem is often time difference between the setting of
data and the occurrence of a failure due to thread
interaction!
  Read-only data has infinite duration!

  Rarely causes problems  
!

  Read / write data has a duration!
  Problem is caused by an earlier write that has been

replaced!
  Can be very difficult to diagnose and test!

IAT–41!

Thread interaction Warning!

Problems occur when we!
!

!Expect 0-connectedness  
!

!But have 1-, 2- or 3-connectedness!

IAT–42!

Dynamic, multi-processor interactions!

  Problem here is threads and events occur in parallel!
  We have concurrent behaviour with a collection of

communicating sequential processors (CSP) 
!

  Have non-deterministic behaviour  
!

  To fully understand need to learn the mathematics of
CSP!

  Without that can only work through an example!

  Figures and tables in Section 15.2.4!

IAT–43!

Dynamic, multi-processor interactions – 2!

  Difficulties arise from!
  Combined Petri nets grow exponentially in size and

complexity!

  May be difficult to rationalize initial marking!

  Have mutual exclusion!
  Contraries!

IAT–44!

Dynamic, multi-processor interactions – 3!

  Difficulties arise from!
  What is the duration of an output!

  Is it controlled by the Petri net?!
  Or fixed in some way?!

  Time interval between events and model reaction time!
  What happens to data values!
  Output events  
!

  Have non-deterministic systems!

Deterministic system!

  How can you tell if a system is deterministic?!

IAT–45!

IAT–46!

Informal definition of determinism!

  (1) A system is deterministic if, given its inputs, we can
always predict its outputs 
!

  (2) A system is deterministic if it always produces the
same outputs for a given set of inputs!

IAT–47!

Informal definition of determinism – 2!

  (For a non-deterministic system it may be difficult to
demonstrate different output!

  Process P chooses non-deterministically at every
step whether to engage in event ‘a’ or ‘b’!

  Process Q chooses non-deterministically once
whether to engage only with event ‘a’ or only with
event ‘b’!

P = (a → P) (b → P)! Q = (a → Qa) (b → Qb)!
!

Qa = (a → Qa) 
 

Qb = (b → Qb)!

traces(Q) ⊂ traces(P) !

IAT–48!

Formal definition of determinism!

  P is deterministic ↔ ∀s : traces (P) •  
 

! !X ∈ refusals (P / s) ↔ X ∩ (P / s)1 = {} 
 
 P1 = { e ⏐ 〈 e 〉 ∈ traces (P) }!

  A system is deterministic if at every step the system
never refuses to engage in any external event
appropriate at that step!

IAT–49!

Formal definition of determinism – 2!

  P is deterministic ↔ ∀s : traces (P) •  
! !X ∈ refusals (P / s) ↔ X ∩ (P / s)1 = {} 

 P1 = { e ⏐ 〈 e 〉 ∈ traces (P) }!

  P1 definition is the set of events in which P may
engage on the first step!

  P / s is the process after P has engaged in all of the
events in the trace s!

  A trace is a record of the external events in which a
process has engaged!

  A refusal is a set of events in which a process refuses
to engage!

IAT–50!

On non-determinism!

  In a Petri net non-determinism arises when two or more
transitions are enabled!
  Which transition fires is random!

  The choice can be made by!
  An external event!

  Environment chooses!

  An internal event!
  System chooses!
  Not stated in the textbook!

IAT–51!

On non-determinism – 2!

  Deadlock occurs when no transition fires!

  Bad but at least detectable!

  Livelock occurs when internal events take over!

  Even if an external event is available, the system
chooses an internal event!

  Basis of infinite loops in programs!

  What can happen when a program does not
respond to keyboard or mouse!

IAT–52!

On non-determinism – 3!

  A thread is locally non-deterministic if we cannot predict
its output with information local to the thread!

  In many cases non-determinism vanishes when
sufficient context is provided!

  Changing the lever in windshield wiper cannot
determine output!

  By adding in the dial, the output can be determined!

IAT–53!

On non-determinism – 4!

  Implication for testers!

  When testing threads with external inputs – especially
data – it is necessary to test the interaction with all
other threads that can be n-connected (n > 0) via
external inputs!

IAT–54!

Models and interactions!

  Static interactions!
  Decision tables are models of choice!

  Dynamic interactions – 1 processor!
  Finite state machines are models of choice!

  Dynamic interactions – multiple processor!
  Event-driven Petri nets are models of choice!

IAT–55!

Client / Server complexities!

  Base system has program components!
  Database, application, presentation (logical output)!
  Have a centralized, fat server and fat client distinction!

  Figure 15.13!

  Entire system includes above items plus!
  Network!
  GUI!
  May have homogeneous or heterogeneous processors!

IAT–56!

Implication of Client / Server complexity!

  When things go wrong!
  Lots of possibilities for finger pointing take place!

IAT–57!

Client / Server testing!

  Extend notion of threads beyond an EDPN!

  CS transaction!

  A sequence of threads across EDPN boundaries!

  Client processor --> network --> application -->
DBMS and back again!

IAT–58!

Client / Server testing – 2!

  Much of the system is stable – e.g. DBMS, existing
application!

  Should testing be needed!

  Use functional testing – no source text!

IAT–59!

Client / Server GUI testing!

  Consists of multiple windows that need to be
synchronized!
  Communicating sequential processors (Petri nets)!

  All events are port events!

  Have dynamic interactions across multiple processors!

IAT–60!

Client / Server GUI testing – 2!

  Use operational profiles!

  Test individual threads!

  Then test thread interaction!
  Big problem if there are multiple clients such as

shared bank accounts!

