
p. 4 of 10

2. [20 marks] Consider the following function that prints the first n primes.

1 private static void printPrimes (int n)

2 {

3 int curPrime; // Value currently considered for primeness

4 int numPrimes; // Number of primes found so far.

5 boolean isPrime; // Is curPrime prime?

6 int [] primes = new int [MAXPRIMES]; // The list of prime numbers.

7

8 // Initialize 2 into the list of primes.

9 primes [0] = 2;

10 numPrimes = 1;

11 curPrime = 2;

12 while (numPrimes < n)

13 {

14 curPrime++; // next number to consider ...

15 isPrime = true;

16 for (int i = 0; i <= numPrimes-1; i++)

17 { // for each previous prime.

18 if (isDivisible (primes[i], curPrime))

19 { // Found a divisor, curPrime is not prime.

20 isPrime = false;

21 break; // out of loop through primes.

22 }

23 }

24 if (isPrime)

25 { // save it!

26 primes[numPrimes] = curPrime;

27 numPrimes++;

28 }

29 } // End while

30

31 // Print all the primes out.

32 for (int i = 0; i <= numPrimes-1; i++)

33 {

34 System.out.println ("Prime: " + primes[i]);

35 }

36 }



p. 5 of 10

Draw the Control Flow Graph for this function. Clearly indicate what are the seg-
ments (you can do this on the code if you prefer).

The 12 segments for printPrimes (each worth 1 mark) are shown below. The Control
Flow Graph is shown next (8 marks). Each incorrect edge is minus two marks.
Segment Z denotes the end of the execution of printPrimes.

Segment A: Lines 1-11

Segment B: Line 12

Segment C: Lines 14-15 plus the initialization of the for loop.

Segment D: i <= numPrimes - 1

Segment E: Lines 17-18

Segment F: Lines 20-21

Segment G: i++

Segment H: Line 24

Segment I: Lines 26-27

Segment J: The initialization od the for loop in line 32

Segment K: i <= numPrimes - 1

Segment L: Line 34 plus i++

L I

K

J

H

G

F

E

DCB

A

Z



p. 6 of 10

3. [30 marks] For the function of the previous question, indicate and explain briefly
how you derived

(a) A minimal test suite that achieves 100% segment coverage [10 marks].

Segments A and B will be covered with any test case. Similarly, any test case
where n is larger than 0 will cover segments J, K, and L. A value for n larger
than 1 will ensure that we enter the loop, which will cover segments C,D,E,G,H,I
(notice that we cannot exit the loop unless we visit segment I). So, we simply
need to select a test case that will take us to segment F. This means that as we
are searching for prime numbers, we encounter a number that is not prime. For
this to happen, we need n to be 3. This will discover the prime numbers 2, 3,
and 5, and will pass over 4.

Therefore, our minimal test suite consists of one test case, n=3.

(b) A minimal test suite that achieves 100% branch coverage [10 marks].

The test suite that achieves segment coverage, also achieves branch coverage,
so there is no need for additional test cases.


