

Introduction

- Boundary Value Testing derives test cases with
 - Massive redundancy
 - Serious gaps
- Equivalence Class Testing attempts to alleviate these problems
- Two orthogonal dimensions
 - Robustness
 - Single/Multiple Fault Assumption

2

Equivalence Class Testing

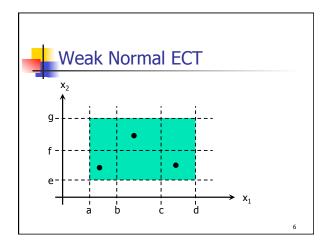
- Partition the set of all test cases into mutually disjoint subsets whose union is the entire set
- Choose one test case from each subset
- Two important implications for testing:
 - The fact that the entire set is represented provides a form of completeness
 - 2. The disjointness assures a form of nonredundancy

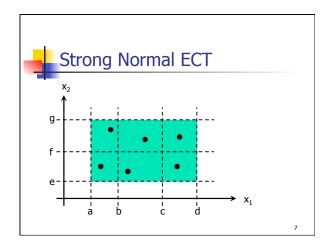
3

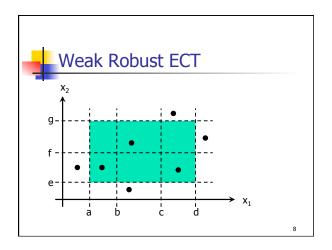
Equivalence Class Selection

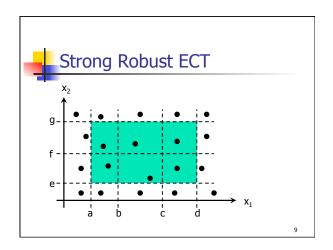
- If the equivalence classes are chosen wisely, the potential redundancy among test cases is greatly reduced.
- The key point in equivalence class testing is the choice of the equivalence relation that determines the classes.
- We will differentiate below, between four different types of equivalence class testing.

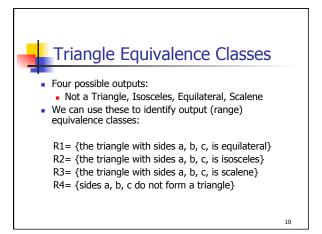
4

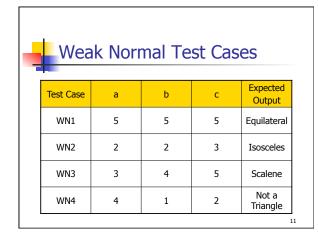



Applicability


- Equivalence Class Testing is appropriate when the system under test can be expressed as a function of one or more variables, whose domains have well defined intervals
- For a two-variable function F(x1,x2)
 a ≤ x₁ ≤ d, with intervals [a,b), [b,c), [c,d]


 $a \le x_1 \le d$, with intervals [a,b), [b,c), [c,d] $e \le x_2 \le g$, with intervals [e,f), [f,g]


5



Weak Robust Test Cases							
Test Case	a	b	С	Expected Output			
WR1	-1	5	5	a not in range			
WR2	5	-1	5	b not in range			
WR3	5	5	-1	c not in range			
WR4	201	5	5	a not in range			
WR5	5	201	5	b not in range			
WR6	5	5	201	c not in range			

Input equivalence classes

D1= $\{ \langle a,b,c \rangle \mid a = b = c \}$

 $D2 = \{ \langle a,b,c \rangle \mid a = b, a \neq c \}$

D3= $\{ \langle a,b,c \rangle \mid a = c, a \neq b \}$

D4= $\{ \langle a,b,c \rangle \mid b = c, a \neq b \}$

D5= $\{ \langle a,b,c \rangle \mid a \neq b, a \neq c, b \neq c \}$

 $D6 = \{ \langle a,b,c \rangle \mid a \geq b+c \}$

D7= $\{ < a,b,c > | b \ge a+c \}$

 $D8 = \{ \langle a,b,c \rangle \mid c \geq a+b \}$

NextDate Equivalence Classes

M1= {month | month has 30 days}

M2= {month | month has 31 days}

M3= {month | month is February}

 $D1 = \{ day \mid 1 \le day \le 28 \}$

 $D2 = \{ day \mid day = 29 \}$

 $D3 = {day | day = 30}$

D4= $\{day \mid day=31\}$

 $Y1 = {year | year = 1900 \text{ or } 2100}$

Y2= {year | year is a leap year}

Y3= {year | year is a common year}

Weak Normal Test Cases

Test Case	Month	Day	Year	Expected Output
WN1	6	14	1900	6/15/1900
WN2	7	29	1996	7/30/1996
WN3	2	30	2002	Invalid input date
WN4	6	31	1900	Invalid input date

NextDate discussion

- There are 36 strong normal test cases (3 x 4 x 3)
- Some redundancy creeps in
 - Testing February 30 and 31 for three different types of years seems unlikely to reveal errors
- There are 150 strong robust test cases (5 x 6 x 5)

16

Guidelines and observations

- Equivalence Class Testing is appropriate when input data is defined in terms of intervals and sets of discrete values.
- Equivalence Class Testing is strengthened when combined with Boundary Value Testing
- Strong equivalence takes the presumption that variables are independent. If that is not the case, redundant test cases may be generated

17

Guidelines and observations

- Complex functions, such as the NextDate program, are well-suited for Equivalence Class Testing
- Several tries may be required before the "right" equivalence relation is discovered

18