
1

Decision Table-Based Testing

Chapter 7

2

Decision Tables - Wikipedia

n  A precise yet compact way to model
complicated logic

n  Associate conditions with actions to
perform

n  Can associate many independent
conditions with several actions in an
elegant way

3

Decision Table Terminology

Stub Rule 1 Rule 2 Rules
3,4 Rule 5 Rule 6 Rules

7,8

c1 T T T F F F

c2 T T F T T F

c3 T F - T F -

a1 X X X

a2 X X

a3 X X

a4 X X

4

Printer Troubleshooting DT

Conditions

Printer does not print Y Y Y Y N N N N

A red light is flashing Y Y N N Y Y N N

Printer is unrecognized Y N Y N Y N Y N

Actions

Heck the power cable X

Check the printer-computer cable X X

Ensure printer software is installed X X X X

Check/replace ink X X X X

Check for paper jam X X

Let’s try this for the Triangle problem

5

Triangle Decision Table

C1: a < b+c? F T T T T T T T T T T

C2: b < a+c? - F T T T T T T T T T

C3: c < a+b? - - F T T T T T T T T

C4: a = b? - - - T T T T F F F F

C5: a = c? - - - T T F F T T F F

C6: b = c? - - - T F T F T F T F

A1: Not a Triangle X X X

A2: Scalene X

A3: Isosceles X X X

A4: Equilateral X

A5: Impossible X X X

6

Triangle Test Cases

Case ID a b c Expected Output

DT1 4 1 2 Not a Triangle

DT2 1 4 2 Not a Triangle

DT3 1 2 4 Not a Triangle

DT4 5 5 5 Equilateral

DT5 ? ? ? Impossible

DT6 ? ? ? Impossible

DT7 2 2 3 Isosceles

DT8 ? ? ? Impossible

DT9 2 3 2 Isosceles

DT10 3 2 2 Isosceles

DT11 3 4 5 Scalene

7

NextDate Decision Table
n  The NextDate problem illustrates the

problem of dependencies in the input
domain

n  Decision tables can highlight such
dependencies

n  Impossible dates can be clearly marked
as a separate action

n  Let’s try it…

8

NextDate Equivalence Classes
M1= {month | month has 30 days}
M2= {month | month has 31 days}
M3= {month | month is February}
D1= {day | 1 ≤ day ≤ 28}
D2= {day | day = 29}
D3= {day | day = 30}
D4= {day | day=31}
Y1= {year | year = 1900 or 2100}
Y2= {year | year is a leap year}
Y3= {year | year is a common year}

9

NextDate DT (1st try - partial)
C1: month in M1? T T T T T T T T T T T T

C2: month in M2?

C3: month in M3?

C4: day in D1? T T T

C5: day in D2? T T T

C6: day in D3? T T T

C7: day in D4? T T T

C8: year in Y1? T T T T

C9: year in Y2? T T T T

C10: year in Y3? T T T T

A1: Impossible X X X

A2: Next Date X X X X X X X X X

10

NextDate DT (2nd try - part 1)

C1: month in M1 M1 M1 M1 M2 M2 M2 M2

C2: day in D1 D2 D3 D4 D1 D2 D3 D4

C3: year in - - - - - - - -

A1: Impossible X

A2: Increment day X X X X X

A3: Reset day X X

A4: Increment month X ?

A5: Reset month ?

A6: Increment year ?

11

NextDate DT (2nd try - part 2)

C1: month in M3 M3 M3 M3 M3 M3 M3 M3

C2: day in D1 D1 D1 D2 D2 D2 D3 D3

C3: year in Y1 Y2 Y3 Y1 Y2 Y3 - -

A1: Impossible X X X X

A2: Increment day X

A3: Reset day X X X

A4: Increment month X X X

A5: Reset month

A6: Increment year

12

New Equivalence Classes
M1= {month | month has 30 days}
M2= {month | month has 31 days}
M3= {month | month is December}
M4= {month | month is February}
D1= {day | 1 ≤ day ≤ 27}
D2= {day | day = 28}
D3= {day | day = 29}
D4= {day | day = 30}
D5= {day | day=31}
Y1= {year | year is a leap year}
Y2= {year | year is a common year}

13

NextDate DT (3rd try - part 1)

C1: month in M1 M1 M1 M1 M1 M2 M2 M2 M2 M2

C2: day in D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

C3: year in - - - - - - - - - -

A1: Impossible X

A2: Increment day X X X X X X X

A3: Reset day X X

A4: Increment month X X

A5: Reset month

A6: Increment year

14

NextDate DT (3rd try - part 2)

C1: month in M3 M3 M3 M3 M3 M4 M4 M4 M4 M4 M4 M4

C2: day in D1 D2 D3 D4 D5 D1 D2 D2 D3 D3 D4 D5

C3: year in - - - - - - Y1 Y2 Y1 Y2 - -

A1: Impossible X X X

A2: Increment day X X X X X X

A3: Reset day X X X

A4: Increment month X X

A5: Reset month X

A6: Increment year X

15

Test Case Design
n  To identify test cases with decision tables, we

interpret conditions as inputs, and actions as
outputs.

n  Sometimes conditions end up referring to
equivalence classes of inputs, and actions
refer to major functional processing portions
of the item being tested.

n  The rules are then interpreted as test cases.

16

Applicability
n  The specification is given or can be converted

to a decision table .
n  The order in which the predicates are

evaluated does not affect the interpretation of
the rules or resulting action.

n  The order of rule evaluation has no effect on
resulting action .

n  Once a rule is satisfied and the action
selected, no other rule need be examined.

n  The order of executing actions in a satisfied
rule is of no consequence.

17

Applicability
n  The restrictions do not in reality eliminate

many potential applications.
n  In most applications, the order in which the

predicates are evaluated is immaterial.
n  Some specific ordering may be more efficient than

some other but in general the ordering is not
inherent in the program's logic.

18

Decision Tables - Issues

n  Before deriving test cases, ensure that
n  The rules are complete

n  Every combination of predicate truth values is
explicit in the decision table

n  The rules are consistent
n  Every combination of predicate truth values

results in only one action or set of actions

19

Guidelines and Observations
n  Decision Table testing is most appropriate for

programs where
n  There is a lot of decision making
n  There are important logical relationships among

input variables
n  There are calculations involving subsets of input

variables
n  There are cause and effect relationships between

input and output
n  There is complex computation logic (high

cyclomatic complexity)

20

Guidelines and Observations
n  Decision tables do not scale up very well

n  May need to
n  Use extended entry decision tables
n  Algebraically simplify tables

n  Decision tables can be iteratively refined
n  The first attempt may be far from satisfactory

21

Variable Negation Strategy
n  An approach that can help with the

scaling problems of decision table-based
testing

n  Applicable when the system under test
can be represented as a truth table
(binary input and output)

n  Designed to select a small subset of the
2N test cases

22

Example truth table
Variant
Number

Normal Pressure Call For Heat Damper Shut Manual Mode Ignition Enable

A B C D Z

0 0 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 0

3 0 0 1 1 0

4 0 1 0 0 0

5 0 1 0 1 0

6 0 1 1 0 0

7 0 1 1 1 0

8 1 0 0 0 0

9 1 0 0 1 1

10 1 0 1 0 0

11 1 0 1 1 1

12 1 1 0 0 1

13 1 1 0 1 1

14 1 1 1 0 0

15 1 1 1 1 1

23

Deriving the Logic Function
n  Review boolean algebra

n  AB = A and B
n  A+B = A or B
n  ~A = not A

n  A logic function maps n boolean input
variables to a boolean output variable

n  A truth table is an enumeration of all
possible input and output values

24

Logic function

n  The logic function for the example is
 Z = AB~C + AD

n  Several techniques to derive it
n  Karnaugh maps
n  Cause-effect graphs

n  A compact logic function will produce
more powerful test cases

25

Variable Negation Strategy
n  Designed to reveal faults that hide in a don’t

care
n  The test suite contains:

n  Unique true points: A variant per term t, so that
t is True and all other terms are False

n  Near False Points: A variant for each literal in a
term. The variant is obtained by negating the
literal and is selected only if it makes Z=0

n  Each variant creates a test candidate set
n  Unique true point candidate sets in boiler

example: {12} {9,11,15}

26

Negation variants
Candidate

 set number
Term

negation
Variants

containing
this negation

Variants
containing

this negation
where Z=0

2 ABC 14,15 14

3 A~B~C 8,9 8

4 ~AB~C 4,5 4,5

6 A~D 8,10,12,14 8,10,14

7 ~AD 1,3,5,7 1,3,5,7

27

Selecting the test cases
n  At least one variant from each candidate set
n  Can be done by inspection
n  Random selection is also used
n  Near False Points exercise combinations of

don’t care values
n  6% of all possible tests are created
n  98% of simulated bugs can be found

28

Test suite
n  Candidate sets

12
14
8
4,5
9,11,15
8,10,14
1,3,5,7

n  Minimum Test suite
5
8
9
12
14

