
1

Functional Testing Review

2

Functional Testing
n  We saw three types of functional testing

n  Boundary Value Testing
n  Equivalence Class Testing
n  Decision Table-Based Testing

n  The common thread among these techniques
is that they all view a program as a
mathematical function that maps its inputs to
its outputs.

n  We now look at questions related to testing
effort, testing efficiency, and testing
effectiveness.

3

Boundary Value Test Cases
Test Case a b c Expected Output

1 100 100 1 Isosceles

2 100 100 2 Isosceles

3 100 100 100 Equilateral

4 100 100 199 Isosceles

5 100 100 200 Not a Triangle

6 100 1 100 Isosceles

7 100 2 100 Isosceles

8 100 100 100 Equilateral

9 100 199 100 Isosceles

10 100 200 100 Not a Triangle

11 1 100 100 Isosceles

12 2 100 100 Isosceles

13 100 100 100 Equilateral

14 199 100 100 Isosceles

15 200 100 100 Not a Triangle

4

Equivalence Class Test Cases

Test Case a b c
Expected
Output

WN1 5 5 5 Equilateral

WN2 2 2 3 Isosceles

WN3 3 4 5 Scalene

WN4 4 1 2 Not a Triangle

WR1 -1 5 5 a not in range

WR2 5 -1 5 b not in range

WR3 5 5 -1 c not in range

WR4 201 5 5 a not in range

WR5 5 201 5 b not in range

WR6 5 5 201 c not in range

5

Decision Table Test Cases

Test Case a b c Expected Output

DT1 4 1 2 Not a Triangle

DT2 1 4 2 Not a Triangle

DT3 1 2 4 Not a Triangle

DT4 5 5 5 Equilateral

DT5 ? ? ? Impossible

DT6 ? ? ? Impossible

DT7 2 2 3 Isosceles

DT8 ? ? ? Impossible

DT9 2 3 2 Isosceles

DT10 3 2 2 Isosceles

DT11 3 4 5 Scalene

6

Testing Effort

Boundary
value

Equivalence
class

Decision
table

Sophistication

high

low

Number of Test Cases

7

Testing Effort

Boundary
value

Equivalence
class

Decision
table

Sophistication

high

low

Effort to Identify Test Cases

8

Testing Effort
n  Boundary Value Testing has no recognition of

data or logical dependencies
n  Mechanical generation of test cases

n  Equivalence Class Testing takes into account
data dependencies
n  More thought and care is required to define the

equivalence classes
n  Mechanical generation after that

9

Testing Effort
n  The decision table technique is the most

sophisticated, because it requires that we
consider both data and logical dependencies.
n  Iterative process
n  Allows manual identification of redundant test

cases

n  Tradeoff between test identification effort and
test execution effort

10

Testing Efficiency
n  Fundamental limitations of functional testing

n  Gaps of untested functionality
n  Redundant tests

n  Testing efficiency question: How can we
create a set of test cases that is “just right”?

n  Hard to answer. Can only rely on the general
knowledge that more sophisticated
techniques, such as decision tables, are
usually more efficient

n  Structural testing methods will allow us to
define more interesting metrics for efficiency

11

Testing Efficiency Example
n  The worst case boundary analysis for the

NextDate program generated 125 cases.
These are fairly redundant (check January 1
for five different years, only a few February
cases but none on February 28, and February
29, and no major testing for leap years)

n  The strong equivalence class test cases
generated 36 test cases 11 of which are
impossible.

n  The decision table technique generated 22
test cases (fairly complete)

12

Testing Effectiveness
n  How effective is a method or a set of

test cases for finding faults present in a
program?

n  Hard to answer because
n  It presumes we know all faults in a

program
n  It is impossible to prove that a program is

free of faults (equivalent to solving the
halting problem)

13

Testing Effectiveness
n  The best we can do is to work backward from

fault types
n  Given a fault type we can choose testing

methods that are likely to reveal faults of that
type
n  Use knowledge related to the most likely kinds of

faults to occur
n  Track kinds and frequencies of faults in the

software applications we develop

14

Guidelines
n  Kinds of faults may reveal some pointers as

to which testing method to use.
n  If we do not know the kinds of faults that are

likely to occur in the program then the
attributes most helpful in choosing functional
testing methods are:
n  Whether the variables represent physical or logical

quantities
n  Whether or not there are dependencies among

variables
n  Whether single or multiple faults are assumed
n  Whether exception handling is prominent

15

Guidelines
1.  If the variables refer to physical quantities

and/or are independent, domain testing and
equivalence testing can be considered.

2.  If the variables are dependent, decision
table testing can be considered

3.  If the single-fault assumption is plausible to
assume, boundary value analysis and
robustness testing can be considered

16

Guidelines
4.  If the multiple-fault assumption is plausible

to assume, worst case testing, robust worst
case testing, and decision table testing can
be considered

5.  If the program contains significant exception
handling, robustness testing and decision
table testing can be considered

6.  If the variables refer to logical quantities,
equivalence class testing and decision table
testing can be considered

17

Functional Testing Decision Table

C1: Variables (P=Physical, L=Logical)? P P P P P L L L L L
C2: Independent Variables? Y Y Y Y N Y Y Y Y N
C3: Single fault assumption? Y Y N N - Y Y N N -
C4: Exception handling? Y N Y N - Y N Y N -
A1: Boundary value analysis X
A2: Robustness testing X
A3: Worst case testing X
A4: Robust worst case testing X
A5: Weak robust equivalence testing X X X X
A6: Weak normal equivalence testing X X X X
A7: Strong normal equivalence testing X X X X X X
A8: Decision table X X

