
1

Test automation / JUnit

Building automatically repeatable
test suites

2

Test automation

n  Test automation is software that
automates any aspect of testing
n  Generating test inputs and expected results
n  Running test suites without manual

intervention
n  Evaluating pass/no pass

n  Testing must be automated to be
effective and repeatable

3

Automated testing steps
n  Exercise the implementation with the

automated test suite
n  Repair faults revealed by failures
n  Rerun the test suite on the revised

implementation
n  Evaluate test suite coverage
n  Enhance the test suite to achieve coverage

goals
n  Rerun the automated test suite to support

regression testing
4

Automated testing advantages
n  Permits quick and efficient verification of bug

fixes
n  Speeds debugging and reduces “bad fixes”
n  Allows consistent capture and analysis of test

results
n  Its cost is recovered through increased

productivity and better system quality
n  More time to design better tests, rather than

entering and reentering tests

5

Automated testing advantages
n  Unlike manual testing, it is not error-

prone and tedious
n  Only feasible way to do regression

testing
n  Necessary to run long and complex

tests
n  Easily evaluates large quantities of

output

6

Limitations and caveats
n  A skilled tester can use his experience

to react to manual testing results by
improvising effective tests

n  Automated tests are expensive to create
and maintain

n  If the implementation is changing
frequently, maintaining the test suite
might be hard

2

7

XP approach to testing
n  In the Extreme Programming approach

n  Tests are written before the code itself
n  If the code has no automated test cases, it is

assumed not to work
n  A testing framework is used so that automated

testing can be done after every small change to
the code

n  This may be as often as every 5 or 10 minutes

n  If a bug is found after development, a test is
created to keep the bug from coming back

8

XP consequences
n  Fewer bugs
n  More maintainable code
n  The code can be refactored without fear
n  Continuous integration

n  During development, the program always
works

n  It may not do everything required, but
what it does, it does right

9

JUnit
n  JUnit is a framework for writing tests

n  Written by Erich Gamma (of Design Patterns
fame) and Kent Beck (creator of XP methodology)

n  Uses Java 5 features such as annotations and
static imports

n  JUnit helps the programmer:
n  define and execute tests and test suites
n  formalize requirements
n  write and debug code
n  integrate code and always be ready to release a working

version

10

Terminology
n  A test fixture sets up the data (both objects

and primitives) that are needed for every test
n  Example: If you are testing code that updates an

employee record, you need an employee record to
test it on

n  A unit test is a test of a single class
n  A test case tests the response of a single

method to a particular set of inputs
n  A test suite is a collection of test cases
n  A test runner is software that runs tests and

reports results

11

Structure of a JUnit test class
n  To test a class named Fraction
n  Create a test class FractionTest

import org.junit.*; !
import static org.junit.Assert.*;!
public class FractionTest!
{!

! !…!
}!

12

Test fixtures

n  Methods annotated with @Before will
execute before every test case

n  Methods annotated with @After will
execute after every test case

@Before!
public void setUp() {…}!
@After!
public void tearDown() {…}!

3

13

Class Test fixtures
n  Methods annotated with
@BeforeClass will execute once
before all test cases

n  Methods annotated with
@AfterClass will execute once
after all test cases

n  These are useful if you need to allocate
and release expensive resources once

14

Test cases

n  Methods annotated with @Test are
considered to be test cases

@Test!
public void testadd() {…}!
@Test!
public void testToString() {…}!

15

What JUnit does
n  For each test case t:

n  JUnit executes all @Before methods
n  Their order of execution is not specified

n  JUnit executes t
n  Any exceptions during its execution are

logged
n  JUnit executes all @After methods

n  Their order of execution is not specified
n  A report for all test cases is presented

16

Within a test case
n  Call the methods of the class being tested
n  Assert what the correct result should be with

one of the provided assert methods
n  These steps can be repeated as many times

as necessary
n  An assert method is a JUnit method that

performs a test, and throws an AssertionError
if the test fails
n  JUnit catches these exceptions and shows you the

results

17

List of assert methods 1

n  assertTrue(boolean b)  
assertTrue(String s, boolean b)
n  Throws an AssertionError if b is False
n  The optional message s is included in the Error

n  assertFalse(boolean b)  
assertFalse(String s, boolean b)
n  Throws an AssertionError if b is True
n  All assert methods have an optional message

18

Example: Counter class
n  Consider a trivial “counter” class

n  The constructor creates a counter and
sets it to zero

n  The increment method adds one to the
counter and returns the new value

n  The decrement method subtracts one
from the counter and returns the new
value

n  The corresponding JUnit test class…

4

public class CounterTest {
Counter counter1;

  

@Before
   public void setUp() { // creates a (simple) test fixture

 counter1 = new Counter();
}

   @Test
   public void testIncrement() {

 assertTrue(counter1.increment() == 1);
 assertTrue(counter1.increment() == 2);
}

  

@Test
   public void testDecrement() {

 assertTrue(counter1.decrement() == -1);
}

}
Note that each test begins with a brand new counter	

This means you don’t have to worry about the order in which the tests are run	
 20

List of assert methods 2
n  assertEquals(Object expected,  
 Object actual)

n  Uses the equals method to compare the two
objects

n  Primitives can be passed as arguments thanks
to autoboxing

n  Casting may be required for primitives
n  There is also a version to compare arrays

21

List of assert methods 3
n  assertSame(Object expected,  
 Object actual)
n  Asserts that two references are

attached to the same object (using ==)

n  assertNotSame(Object expected,  
 Object actual)
n  Asserts that two references are not

attached to the same object
22

List of assert methods 4

n  assertNull(Object object)  
Asserts that a reference is null

n  assertNotNull(Object object)
Asserts that a reference is not null

n  fail()  
Causes the test to fail and throw an
AssertionError
n  Useful as a result of a complex test,

or when testing for exceptions

23

Testing for exceptions

n  If a test case is expected to raise an
exception, it can be noted as follows

@Test(expected = Exception.class)!
public void testException() {!
 //Code that should raise an exception!
 fail("Should raise an exception");!
}

public void testAnIOExceptionIsThrown {!
 try!
 {!
 // Code that should raise an IO exception!
 fail("Expected an IO exception");!
 } !
 catch (IOException e) !
 {!
 // This is the expected result, so!
 // leave it empty so that the test!
 // will pass. If you care about !
 // particulars of the exception, you!
 // can test various assertions about!
 // the exception object!
 }!
}!

5

25

The assert statement

n  A statement such as
 assert boolean_condition;  

 will also throw an AssertionError if the
boolean_condition is false

n  Can be used instead of the Junit
assertTrue method

26

Ignoring test cases

n  Test cases that are not finished yet can
be annotated with @Ignore!

n  JUnit will not execute the test case but
will report how many test cases are
being ignored

27

Automated testing issues
n  It isn’t easy to see how to unit test

GUI code
n  JUnit is designed to call methods and

compare the results they return
against expected results
n  This works great for methods that just

return results, but many methods have
side effects

28

Automated testing issues
n  To test methods that do output, you

have to capture the output
n  It’s possible to capture output, but it’s an

unpleasant coding chore
n  To test methods that change the state

of the object, you have to have code
that checks the state
n  It’s a good idea to have methods that test

state invariants

29

First steps toward solutions
n  You can redefine System.out to use a

different PrintStream with
System.setOut(PrintStream)!

n  You can “automate” GUI use by
“faking” events
n  We will see this in more detail later

JUnit in Eclipse

n  JUnit can be downloaded from
http://junit.sourceforge.net/

n  If you use Eclipse, as in this course, you
do not need to download anything

n  Eclipse contains wizards to help with
the development of test suites with
JUnit

n  JUnit results are presented in an Eclipse
window

6

Hello World demo

n  Run Eclipse
n  File -> New -> Project, choose Java Project,

and click Next. Type in a project name, e.g.
ProjectWithJUnit.

n  Click Next
n  Click Create New Source Folder, name it test
n  Click Finish
n  Click Finish

Create a class

n  Right-click on ProjectWithJUnit
Select New -> Package
Enter package name, e.g. eecs4313
Click Finish

n  Right-click on eecs4313
Select New -> Class
Enter class name, e.g. HelloWorld
Click Finish

Create a class - 2

n  Add a dummy method such as
public String say() { return null; }

n  Right-click in the editor window and
select Save

Create a test class

n  Right-click on the HelloWorld class
Select New -> Junit Test Case

n  Change the source folder to test as opposed
to src

n  Check to create a setup method
n  Click Next

Create a test class

n  Check the checkbox for the say method
n  This will create a stub for a test case for this

method

n  Click Finish
n  Click OK to “Add JUnit 4 library to the build

path”
n  The HelloWorldTest class is created
n  The first version of the test suite is ready

Run the test class - 1st try

n  Right click on the HelloWorldTest class
n  Select Run as -> JUnit Test
n  The results appear in the left
n  The automatically created test case fails

7

Create a better test case

n  Import the class under test
 import eecs4313.HelloWorld;

n  Declare an attribute of type HelloWorld
HelloWorld hi;

n  The setup method should create a
HelloWorld object
hi = new HelloWorld();

n  Modify the testSay method body to
assertEquals("Hello World!",  
 hi.say());

Run the test class - 2nd try

n  Save the new version of the test class
and re-run

n  This time the test fails due to expected
and actual not being equal

n  The body of the method say has to be
modified to
return “Hello World!”;
for the test to pass

Create a test suite

n  Right-click on the eecs4313 package in
the test source folder

n  Select New -> Class. Name the class
AllTests.

n  Modify the class text so it looks like
class AllTests on the course website

n  Run with Run -> Run As -> JUnit Test
n  You can easily add more test classes

