
Path Testing + Coverage

Chapter 8

Structural Testing
n  Also known as glass/white/open box testing
n  A software testing technique whereby explicit

knowledge of the internal workings of the
item being tested are used to select the test
data

n  Functional Testing uses program specification
n  Structural Testing is based on specific

knowledge of the source code to define the
test cases and to examine outputs.

2

Structural Testing
n  Structural testing methods are very

amenable to:
n  Rigorous definitions

n  Control flow, data flow, coverage criteria
n  Mathematical analysis

n  Graphs, path analysis

n  Precise measurement
n  Metrics, coverage analysis

3

Program Graph - Definition

n  Given a program written in an
imperative programming language, its
program graph is a directed graph in
which nodes are statement fragments,
and edges represent flow of control

n  A complete statement is also considered
a statement fragment

4

Program Graph - Example
4

5

6

7

8

10

9

11 12 13

21

14 15

22

16 17

18 19

20
5

DD-Path
n  A decision-to-decision path (DD-Path) is a

chain in a program graph such that:
n  Case1: it consists of a single node with indeg=0
n  Case2: it consists of a single node with outdeg=0
n  Case3: it consists of a single node with indeg ≥ 2

or outdeg ≥ 2
n  Case4: it consists of a single node with indeg =1,

and outdeg = 1
n  Case5: it is a maximal chain of length ≥ 1

n  DD-Paths are also known as segments

6

DD-Path Graph

n  Given a program written in an
imperative language, its DD-Path
graph is a directed graph, in which
nodes are DD-Paths of its program
graph, and edges represent control flow
between successor DD-Paths.

n  Also known as Control Flow Graph

7

Control Flow Graph Derivation

n  Straightforward process
n  Some judgement is required
n  The last statement in a segment must

be a predicate, a loop control, a break,
or a method exit

n  Let’s try an example…

8

public int displayLastMsg(int nToPrint) {!
 np = 0;!
 if ((msgCounter > 0) && (nToPrint > 0)) {!
 for (int j = lastMsg; ((j != 0) && (np < nToPrint)); --j) {!
 System.out.println(messageBuffer[j]);!
 ++np;!
 }!
 if (np < nToPrint) {!
 for (int j = SIZE; ((j != 0) && (np < nToPrint)); --j) {!
 System.out.println(messageBuffer[j]);!
 ++np;!
 }!
 }!
 }!
 return np;!
}!
!

9

Control
flow
graph for
previous
slide

10

Control flow graphs
n  Depict which program segments may be

followed by others
n  A segment is a node in the CFG
n  A conditional transfer of control is a branch

represented by an edge
n  An entry node (no inbound edges)

represents the entry point to a method
n  An exit node (no outbound edges)

represents an exit point of a method

11

Control flow graphs
n  An entry-exit path is a path from the entry

node to the exit node
n  Path expressions represent paths as

sequences of nodes
n  Loops are represented as segments within

parentheses followed by an asterisk
n  Example: ABC(DEF)*DGL

n  How many path expressions in this example?

12

Example path expressions
AL
ABL
ABCDGL
ABCDEGL
ABC(DEF)*DGL
ABC(DEF)*DEGL
ABCDGHIL
ABCDGHIJL
ABCDGH(IJK)*IL
ABC(DEF)*DEGH(IJK)*IJL 13

Code coverage models

n  Statement Coverage
n  Segment Coverage
n  Branch Coverage
n  Multiple-Condition Coverage

14

Statement coverage
n  Achieved when all statements in a method

have been executed at least once
n  How many test cases do we need to achieve

statement coverage in our example?
n  A test case that will follow the path

expression below will achieve statement
coverage

ABC(DEF)*DGH(IJK)*IL

15

Segment coverage
n  Segment coverage counts segments rather

than statements
n  May produce drastically different numbers

n  Assume two segments P and Q
n  P has one statement, Q has nine
n  Exercising only one of the segments will give 10%

or 90% statement coverage
n  Segment coverage will be 50% in both cases

16

Statement coverage problems

n  Predicate may be tested for only one
value (misses many bugs)

n  Loop bodies may only be iterated once
n  Statement coverage can be achieved

without branch coverage. Important
cases may be missed
String s = null;
if (x != y) s = “Hi”;
String s2 = s.substring(1); 17

Branch coverage
n  Achieved when every branch from a

node is executed at least once
n  At least one true and one false

evaluation for each predicate
n  Can be achieved with D+1 paths in a

control flow graph with D 2-way
branching nodes and no loops
n  Even less if there are loops

18

Branch coverage problems

n  Short-circuit evaluation means that
many predicates might not be evaluated

n  A compound predicate is treated as a
single statement. If n clauses, 2n
combinations, but only 2 are tested

n  Only a subset of all entry-exit paths is
tested if (a == b) x++;

if (c == d) x--;
19

Multiple-condition coverage

n  All true-false combinations of simple
conditions in compound predicates are
considered at least once

n  A truth table may be necessary
n  Not necessarily achievable due to lazy

evaluation or mutually exclusive
conditions

if ((x > 0) && (x < 5)) …
20

Dealing with Loops
n  Loops are highly fault-prone, so they

need to be tested carefully
n  Simple view: Every loop involves a

decision to traverse the loop or not
n  A bit better: Boundary value analysis on

the index variable
n  Nested loops have to be tested

separately starting with the innermost

21

Creating test cases

n  In order to increase the coverage of a
test suite, one needs to generate test
cases that exercise certain statements
or follow a specific path

n  This is not always easy to do…

22

CFG question

n  What is the control flow graph
 for the following?

if a < b then c = a + b ; d = a * b
 else c = a * b ; d = a + b
if c < d then x = a + c ; y = b + d
 else x = a * c ; y = b * d

23

Creating a test case

n  What is the key question that
needs to be answered to be able to
create a test for a path?

24

Creating a test case

n  What is the key question that
needs to be answered to be able to
create a test for a path?
n  How to make the path execute, if possible.

n  Generate input data that satisfies all the conditions
on the path.

25

Creating a test case

n  What are the key items you need
to generate a test case for a path?

26

Creating a test case

n  What are the key items you need
to generate a test case for a path?
n  Input vector
n  Predicate
n  Path predicate
n  Predicate interpretation
n  Path predicate expression
n  Create test input from path predicate

expression
27

Input Vector

n  What is an input vector?

28

Input Vector – 2

n  What is an input vector?
n  A collection of all data entities read by the

routine whose values must be fixed prior to
entering the routine.

29

Input Vector – 3

n  What are the members of an input
vector?

30

Input Vector – 4

n  What are the members of an input
vector?
n  Input arguments to the routine

n  Global variables and constants

n  Files

n  Network connections

n  Timers

31

Predicate

n  What is a predicate?

32

Predicate – 2
n  What is a predicate?
n  A logical function evaluated at a

decision point.
n  In the following each of a < b and c < d

are predicates

1	

3	

 4	

2	

T	

T	

F	

F	

A	

B	

if a < b then c = a + b ; d = a * b

 else c = a * b ; d = a + b

if c < d then x = a + c ; y = b + d

 else x = a * c ; y = b * d

33

Path predicate

n  What is a path predicate?

34

Path predicate – 2
n  The set of predicates associated with a

path.
n  a < b = true ∧	
 c < d = false

is a path predicate

1	

3	

 4	

2	

T	

T	

F	

F	

A	

B	

if a < b then c = a + b ; d = a * b

 else c = a * b ; d = a + b

if c < d then x = a + c ; y = b + d

 else x = a * c ; y = b * d

35

Path Predicate Expression

n  What is a path predicate
expression?

36

Path Predicate Expression – 2

n  What is a path predicate
expression?
n  An interpreted path predicate

37

Predicate Interpretation

n  What is a path predicate
interpretation?

38

Predicate Interpretation – 2

n  What is a path predicate
interpretation?
n  A path predicate may contain local

variables.
n  Local variables cannot be selected

independently of the input variables
n  Local variables are eliminated with

symbolic execution

39

Predicate Interpretation – 3

n  What is symbolic execution?
n  Symbolically substituting operations along

a path in order to express the predicate
solely in terms of the input vector and a
constant vector.

n  A predicate may have different
interpretations depending on how control
reaches the predicate.

40

Attributes of a Path Predicate
Expression

n  What are the attributes of a path
predicate expression?

41

Attributes of a Path Predicate
Expression – 2

n  What are the attributes of a path
predicate expression?
n  No local variables
n  A set of constraints in terms of the input

vector, and, maybe, constants

n  Path forcing inputs are generated by
solving the constraints

n  If a path predicate expression has no
solution, the path is infeasible

42

Path Predicate Generating
Input Values

n  Path predicate a < b = true ∧ c < d = false

n  Substitute for c and d c = a + b d = a * b

 a < b = true ∧ a + b < a * b = false

→ 	

a < b ∧ a + b ≥ a * b

if a < b then c = a + b ; d = a * b

 else c = a * b ; d = a + b

if c < d then x = a + c ; y = b + d

 else x = a * c ; y = b * d

43

Path Predicate Generating
Input Values – 2

 a < b ∧ a + b ≥ a * b
n  Solve for a and b a = 0 ∧ b = 1

n  Solutions are not unique

n  A solution exists
n  We have a feasible path

n  No solution to the constraints
n  Have an infeasible path

44

Organizing path predicates

n  How can we organize the set of
path predicates?

45

Organizing path predicates – 2

n  How can we organize the set of
path predicates?
n  Use a decision table

n  How would a decision table be used?

46

Decision table for the example
 A1B3 A1B4 A2B3 A2B4

A < B T T F F

C < D T F T F

A value 2 0 1 5

B value 5 1 0 2

 Paths A1B3 and A2B4 give statement coverage
or Paths A1B4 and A2B3 give statement coverage

47

Selecting paths

n  A program unit may contain a large
number of paths.
n  Path selection becomes a problem
n  Some selected paths may be infeasible

n  What strategy would you use to
select paths?

48

Selecting paths – 2

n  What strategy would you use to
select paths?
n  Select as many short paths as possible

n  Tradeoffs?

n  Choose longer paths
n  Tradeoffs?

49

Selecting paths – 3

n  What about infeasible paths?
n  What would you do about them?

50

Selecting paths – 4

n  What about infeasible paths?
n  What would you do about them?

n  Make an effort to write program text with
fewer or no infeasible paths.

51

