
1

Test Code Patterns

How to design your test code

2

Testing and Inheritance

n  Should you retest inherited methods?
n  Can you reuse superclass tests for

inherited and overridden methods?
n  To what extent should you exercise

interaction among methods of all
superclasses and of the subclass under
test?

3

Inheritance
n  In the early years people thought that

inheritance will reduce the need for testing
n  Claim 1: “If we have a well-tested superclass, we

can reuse its code (in subclasses, through
inheritance) with confidence and without retesting
inherited code”

n  Claim 2: “A good-quality test suite used for a
superclass will also be sufficient for a subclass”

n  Both claims are wrong.

4

Inheritance-related bugs
n  Missing Override

n  A subclass omits to provide a specialized
version of a superclass method

n  Subclass objects will have to use the
superclass version, which might not be
appropriate

n  E.g. method equals in Object tests for
reference equality. In a given class, it
might be right to override this behaviour

5

Inheritance-related bugs
n  Direct access to superclass fields from the

subclass code
n  Changes to the superclass implementation can

create subclass bugs
n  Subclass bugs or side effects can cause failure in

superclass methods
n  If a superclass is changed, all subclasses need to

be tested
n  If a subclass is changed, superclass features used

in the subclass must be retested

6

Testing of Inheritance

n  Principle: inherited methods should be
retested in the context of a subclass

n  Example 1: if we change some method
m in a superclass, we need to retest m
inside all subclasses that inherit it

2

7

Example 2

n  If we add a new method m2 that has a bug
and breaks the invariant, method m is
incorrect in the context of B even though it is
correct in A
n  Therefore, m should be tested in B

class A {
 int x; // invariant: x > 100
 void m() { // correctness depends on
 // the invariant } }

class B extends A {
 void m2() { x = 1; } }

8

Example 3

n  If inside B we override a method from
A, this indirectly affects other methods
inherited from A
n  e.g., method m calls B.m2, not A.m2: so,

we cannot be sure that m is correct
anymore and we need to retest it inside B

class A {
void m() { …; m2(); … }
void m2() { … } }

class B extends A {
 void m2() { … } }

9

Testing of Inheritance (cont)
n  Test cases developed for a method m defined in

class A are not necessarily sufficient for retesting m
in subclasses of A
n  e.g., if m calls m2 in A and then some subclass overrides

m2 we have a completely new interaction that may not be
covered well by the old test cases for m

n  Still it is essential to run all superclass tests on a
subclass
n  Goal: check behavioral conformance of the subclass w.r.t.

the superclass (LSP)

10

Inheritance-related bugs

n  Square Peg in a Round Hole
n  Design Problem
n  A subclass is incorrectly located in a

hierarchy
n  Liskov Substitution Principle: Functions that

use references to base classes must be
able to use objects of derived classes
without knowing it.

11

An example

n  Consider class Rectangle below

class Rectangle{
 public void setWidth(double w) {itsWidth=w;}
 public void setHeight(double h) {itsHeight=w;}
 public double getHeight() {return itsHeight;}
 public double getWidth() {return itsWidth;}

 private double itsWidth;
 private double itsHeight;
};

12

An example
n  Assume that the system containing

Rectangle needs to deal with squares as
well

n  Since a square is a rectangle, it seems
to make sense to have a new class
Square that extends Rectangle

n  That very “reasonable” design can
cause some significant problems

3

13

Problems with this design
n  Do not need both itsHeight and itsWidth
n  setWidth and setHeight can bring a

Square object to a corrupt state (when
height is not equal to width)

class Square{
 setWidth(double w){
 super.setWidth(w);
 super.setHeight(w);
}
 // Similar for setHeight
}

One
solution

14

Not really a solution

n  Consider this client code

n  The problem is definitely not with the
client code

Rectangle r;
…
r.setWidth(5);
r.setHeight(4);
assert(r.getWidth() * r.getHeight()) == 20);

15

What went wrong?
n  The Liskov substitution principle was violated

n  If you are expecting a rectangle, you can not
accept a square

n  The overridden versions of setWidth and
setHeight broke the postconditions of their
superclass versions

n  Isn’t a square a rectangle? Yes, but not when
it pertains to its behaviour

16

Effect of Inheritance on
Testing?

n  Does not reduce the volume of test
cases

n  Rather, number of interactions to be
verified goes up at each level of the
hierarchy

17

Polymorphic Server Test

n  Consider all test cases that exercise
polymorphic methods

n  According to LSP, these should apply at
every level of the inheritance hierarchy

n  Expand each test case into a set of test
cases, one for each polymorphic
variation

18

An example
class TestAccount {
 Account a;
 @Before
 public void setUp(){
 a = new Account();
 }
 @Test
 public final void testDeposit(){
 a.deposit(100);
 assertTrue(a.getBalance()==100);
 }
}

4

19

An example
class TestSavingsAccount
 extends TestAccount{
 SavingsAccount sa;
 @Before
 public void setUp(){
 a = new SavingsAccount();
 sa = new SavingsAccount();}
 @Test
 public void testInterest(){
 sa.deposit(100);
 sa.applyInterest(0.01);
 assertEquals(101.0,sa.getBalance());
 }}

20

Testing abstract classes
n  Abstract classes cannot be instantiated
n  However, they define an interface and

behaviour (contracts) that implementing
classes will have to adhere to

n  We would like to test abstract classes for
functional compliance
n  Functional Compliance is a module's compliance

with some documented or published functional
specification

21

Functional vs. syntactic
compliance
n  The compiler can easily test that a class is

syntactically compliant to an interface
n  All methods in the interface have to be

implemented with the correct signature

n  Tougher to test functional compliance
n  A class implementing the interface
java.util.List may be implementing
get(int index) or isEmpty()
incorrectly

n  Think LSP…

22

Abstract Test Pattern

n  This pattern provides the following
n  A way to build a test suite that can be

reused across descendants
n  A test suite that can be reused for future

as-yet-unidentified descendants
n  Especially useful for writers of APIs.

23

An example

n  Consider a statistics application that
uses the Strategy design pattern

public interface StatPak
 {
 public void reset();
 public void addValue(double x);
 public double getN();
 public double getMean();
 public double getStdDev();
 }

24

Abstract Test Rule 1

n  Write an abstract test class for every
interface and abstract class

n  An abstract test should have test cases
that cannot be overridden

n  It should also have an abstract Factory
Method for creating instances of the
class to be tested.

5

25

Example abstract test class
public abstract TestStatPak {
 private StatPak statPak;
 @Before
 public final setUp() throws Exception {
 statPak = createStatPak();
 assertNotNull(statPak);
 }
 // Factory Method. Every test class of a
 // concrete subclass K must override this
 // to return an instance of K
 public abstract StatPak createStatPak();
 //Continued in next slide…

26

Example abstract test class
 @Test
 public final void testMean() {
 statPak.addValue(2.0);
 statPak.addValue(3.0);
 statPak.addValue(4.0);
 statPak.addValue(2.0);
 statPak.addValue(4.0);
 assertEquals("Mean value of test data
 should be 3.0", 3.0,statPak.getMean());
 }
 @Test
 public final void testStdDev() { ... }}

27

Abstract Test Rule 2

n  Write a concrete test class for every
implementation of the interface (or
abstract class)

n  The concrete test class should extend
the abstract test class and implement
the factory method

28

Example concrete test class
public class TestSuperSlowStatPak
 extends TestStatPak {

 public StatPak createStatPak()
 {
 return new SuperSlowStatPak();
 }
}

Only a few lines of code and all the test cases for
the interface have been reused

29

Guideline
n  Tests defining the functionality of the

interface belong in the abstract test class
n  Tests specific to an implementation belong in

a concrete test class
n  We can add more test cases to
TestSuperSlowStatPak that are specific to its
implementation

30

Crash Test Dummy

n  Most software systems contain a large
amount of error handling code

n  Sometimes, it is quite hard to create the
situation that will cause the error
n  Example: Error creating a file because the

file system is full

n  Solution: Fake it!

6

import java.io.File;!
import java.io.IOException;!
!
class FullFile extends File {!
!
 public FullFile(String path) {!
 super(path);!
 }!
 !
 public boolean createNewFile()!
 throws IOException {!
 throw new IOException();!
 }!
}!

public void testFileSystemFull() {!
 File f = new FullFile("foo");!
 try {!
 saveAs(f);!
 fail();!
 }!
 catch (IOException e)!
 {}!
 }!

 public void testFileSystemFull() {!
 File f = new FullFile("foo") {!
 public boolean createNewFile()!
 throws IOException {!
 throw new IOException();!
 } !
 };!
 try {!
 saveAs(f);!
 fail();!
 }!
 catch (IOException e)!
 {}!
 }!
!

34

Log String

n  Often one needs to test that the
sequence in which methods are called is
correct

n  Solution: Have each method append to
a log string when it is called
n  Then, assert that the log string is the

correct one
n  Requires changes to the implementation

35

Accessing private fields
n  Object-oriented design guidelines often

designate that certain fields should be
private / protected

n  This can be a problem for testing since
a tester may need to assert certain
conditions about private fields

n  Making these fields public defeats the
purpose

36

A solution

n  Using reflection, one can actually call
private methods and access private
attributes!

n  An example
class A {!
 private String sayHello(String name) {!
 return "Hello, " + name;!
 }!
}

7

import java.lang.reflect.Method;!
!
public void testPrivateMethod {!
 A test = new A();!
 Method[] methods =!
 test.getClass().getDeclaredMethods();!
 for (int i = 0; i < methods.length; ++i) {!
 if (methods[i].getName().equals("sayHello")) {!
 Object params[] = {"Ross"};!
 methods[i].setAccessible(true);!
 Object ret = methods[i].invoke(test, params);!
 System.out.println(ret);!
 }!
 }!
}!

