| Dataflow Testing

Chapter 9

Dataflow Testing

Testing All-Nodes and All-Edges in a control flow graph
may miss significant test cases

Testing All-Paths in a control flow graph is often too time-
consuming

Can we select a subset of these paths that will reveal the
most faults?

Dataflow Testing focuses on the points at which variables
receive values and the points at which these values are
used

DFT-2

Dataflow Analysis

= Can reveal interesting bugs

A variable that is defined but never used
A variable that is used but never defined
A variable that is defined twice before it is used

Sending a modifier message to an object more than
once between accesses

Deallocating a variable before it is used

» Container problem

Deallocating container loses references to items in
the container, memory leak

DFT-3

Definitions

= A node n in the program graph is a defining node for
variable v — DEF(v, n) — if the value of v is defined at the
statement fragment in that node

= Input, assighment, procedure calls

= A node in the program graph is a usage node for variable
v — USE(v, n) — if the value of v is used at the statement
fragment in that node

= Output, assignment, conditionals

DFT—4

Definitions — 2

= A usage node is a predicate use, P-use, if variable v
appears in a predicate expression

= Always in nodes with outdegree = 2

= A usage node is a computation use, C-use, if variable v
appears in a computation

= Always in nodes with outdegree = 1

DFT-5

Definitions — 3

= A node in the program is a kill node for a variable v —
KILL(v, n) —if the variable is deallocated at the statement
fragment in that node

DFT-6

Example 2 — Billing program

calculateBill (usage : INTEGER) : INTEGER
double bill = 0;

if usage > 0 then bill = 40 fi
if usage > 100
then if usage = 200

then bill = bill + (usage — 100) *0.5

else bill = bill + 50 + (usage — 200) * 0.1

if bill = 100 then bill = bill * 0.9 fi
fi

fi

re bl = ~ Kill node for bill
end

DFT-7

*Definition-Use path

= What is a du-path?

DFT-8

Definition-Use path — 2

= What is a du-path?

= A definition-use path, du-path, with respect to a variable
v is a path whose first node is a defining node for v, and
its last node is a usage node for v

DFT-9

Definition clear path

= What is a dc-path?

DFT-10

Definition clear path — 2

= What is a dc-path?

= A du-path with no other defining node for v is a
definition-clear path

DFT-11

Example 1 — Max program

nt max — 0, /_

int jJ = s.nextInt();

max = J;
}
J

= s.nextInt();
} - Adefinition of j

System.out.println(max);

DFT-12

Max program — analysis

Alint max = 0; dc-paths j
int j = s.nextInt(); AB
ABC

v u ABCD
while (j > 0) EB
l EBC

cr—"— u EBCD
1f (J > max)

Legend
A..F Segment name — u dc-paths max
d defining node for j max = j; ABF
u use node for j ABC

: : d
E j = s.nextInt(); gggg

System.out.println(max);

DFT-13

Dataflow Coverage Metrics

= Based on these definitions we can define a set of
coverage metrics for a set of test cases

= We have already seen
= All-Nodes
= All-Edges
= All-Paths

= Data flow has additional test metrics for a set T of paths in
a program graph

= All assume that all paths in T are feasible

DFT-14

All-Defs Criterion

s [he set T satisfies the All-Def criterion

= For every variable v, T contains a dc-path from
every defining node for v to at least one usage
node for v

= Not all use nodes need to be reached

VveV(P),nd € prog _graph(P) | DEF (v,nd)
*Jdnu € prog _graph(P) |USE (v,nu)
°dc _ path(nd,nu) €T

DFT-15

All-Uses Criterion

s The set T satisfies the All-Uses criterion iff

= For every variable v, T contains dc-paths that start at
every defining node for v, and terminate at every usage
node for v

= Not DEF(v, n) x USE(v, n) — not possible to have a dc-
path from every defining node to every usage node

(Vv eV (P),nu€ prog _graph(P) |USE (v,nu)
*dnd € prog _ graph(P) | DEF (v,nd) ® dc _ path(nd,nu) €T)
A

all _defs_ criterion

DFT-16

All-P-uses / Some-C-uses

s The set T satisfies the All-P-uses/Some-C-uses criterion iff

= For every variable v in the program P, T contains a dc-
path from every defining node of v to every P-use node
for v

» If a definition of v has no P-uses, a dc-path leads to
at least one C-use node for v

(Vv eV (P),nu€ prog _graph(P)| P _use(v,nu)
*dnd € prog _ graph(P) | DEF (v,nd) ® dc _ path(nd,nu) €T)
A

all _defs_ criterion

DFT-17

All-C-uses / Some-P-uses

s [he test set T satisfies the All-C-uses/Some-P-uses
criterion iff

= For every variable v in the program P, T contains a dc-
path from every defining node of v to every C-use of v

« If a definition of v has no C-uses, a dc-path leads to
at least one P-use

(Vv eV (P),nu€ prog _graph(P) | C _use(v,nu)
*dnd € prog _ graph(P) | DEF (v,nd) ® dc _ path(nd,nu) €T)
A

all _defs _ criterion

DFT-18

Miles-per-gallon Program

miles_per_gallon (miles, gallons, price : INTEGER)
if gallons = 0 then

/| Watch for division by zero!!

Print(“You have “ + gallons + “gallons of gas”)
else if miles/gallons > 25

then print(“Excellent car. Your mpg is “
+ miles/gallon)

else print(“You must be going broke. Your mpg is “
+ miles/gallon + “ cost “ + gallons * price)

fi
end

DFT-19

Miles-per-gallon Program — 2

= We want du- and dc-paths

= What do you do next?

DFT-20

Mile-per-gallon Program — Segmented

gasguzzler (miles, gallons, price : INTEGER) A
if gallons = 0 then B
/ /| Watch for division by zero!! C
Print(“You have “ + gallons + “gallons of gas”)
else if miles/gallons > 25 D
then print(“Excellent car. Your mpg is “ E
+ miles/gallon)
else print(“You must be going broke. Your mpgis“ | F
+ miles/gallon + “ cost “ + gallons * price)
fi G
end

DFT-21

Miles-per-gallon Program — 3

= We want du- and dc-paths

= What do you do next?

DFT-22

i MPG program graph

What do you do now?

F

i E G
T/
F—_

DFT-23

MPG program graph

Def miles,

gallons A
C-use gallons
P-use
gallons T— C
F C-use miles, gallons

P-use T] E G
miles,
gallons

Possible F — F

C-use miles, gallons
But not common
practice

C-use miles, gallons, price

DFT-24

Miles-per-gallon Program — 4

= We want du- and dc-paths

= What do you do next?

DFT-25

Example du-paths

= For each variable in the miles_per_gallon program create
the test paths for the following dataflow path sets

= All-Defs (AD)

= All-C-uses (ACU)

= All-P-uses (APU)

= All-C-uses/Some-P-uses (ACU+P)
= All-P-uses/Some-C-uses (APU+C)

= All-uses

DFT-26

MPG — DU-Paths for Miles

= All-Defs

= Each definition of each variable for at least one use of
the definition

« ABD

s All-C-uses

= At least one path of each variable to each c-use of the
definition

« ABDE ABDF ABD

DFT-27

MPG — DU-Paths for Miles — 2

s All-P-uses

= At last one path of each variable to each p-use of the
definition

« ABD

m All-C-uses/Some-P-uses

= At least one path of each variable definition to each c-
use of the variable. If any variable definitions are not
covered use p-use

« ABDE ABDF ABD

DFT-28

MPG — DU-Paths for Miles — 3

s All-P-uses/Some-C-uses

= At least one path of each variable definition to each p-
use of the variable. If any variable definitions are not
covered by p-use, then use c-use

« ABD

s All-uses

= At least one path of each variable definition to each p-
use and each c-use of the definition

« ABD ABDE ABDF

DFT-29

MPG — DU-Paths for Gallons

= All-Defs

= Each definition of each variable for at least one use of the
definition

= AB
s All-C-uses

= At least one path of each variable to each c-use of the
definition

« ABC ABDE ABDF ABD

DFT-30

MPG — DU-Paths for Gallons — 2

s All-P-uses

= At least one path of each variable definition to each p-
use of the definition

« AB ABD

m All-C-uses/Some-P-uses

= At least one path of each variable definition to each c-
use of the variable. If any variable definitions are not
covered by c-use, then use p-use

« ABC ABDE ABDF ABD

DFT-31

MPG — DU-Paths for Gallons — 3

s All-P-uses/Some-C-uses

= At least one path of each variable definition to each p-
use of the variable. If any variable definitions are not
covered use c-use

« AB ABD

s All-uses

= At least one path of each variable definition to each p-
use and each c-use of the definition

« AB ABC ABD ABDE ABDF

DFT-32

MPG — DU-Paths for Price

= All-Defs

= Each definition of each variable for at least one use of
the definition

« ABDF

s All-C-uses

= At least one path of each variable to each c-use of the
definition

« ABDF

DFT-33

MPG — DU-Paths for Price — 2

s All-P-uses

= At least one path of each variable definition to each p-
use of the definition

= None

s All-C-uses/Some-P-uses

= At least one path of each variable definition to each c-
use of the variable. If any variable definitions are not
covered use p-use

« ABDF

DFT-34

MPG — DU-Paths for Price — 2

s All-P-uses/Some-C-uses

= At least one path of each variable definition to each p-
use of the variable. If any variable definitions are not
covered use c-use

« ABDF

s All-uses

= At least one path of each variable definition to each p-
use and each c-use of the definition

« ABDF

DFT-35

Rapps-Weyuker data flow hierarchy

-

All-Paths

A\ 4

All-DU-Paths

A\ 4

All-Uses

T~

All-C-uses
Some-P-uses

All-P-uses
Some-C-uses

All-Defs

~N., .

N\

All-P-uses

|

All-Edges

v

All-Nodes

DFT-36

Potential Anomalies — static analysis

Data flow node combinations for a variable
Allowed? — Potential Bug? — Serious defect?

Anomalies Explanation
~d first define ?277?
du define-use ?277?
dk define-Kkill 277
~ U first use ?77?
ud use-define 277
uk use-Kkill ?7??
~ K first kill ?77?
Ku Kill-use 277

DFT-37

Potential Anomalies — static analysis — 2

Data flow node combinations for a variable
Allowed? — Potential Bug? — Serious defect?

Anomalies Explanation
kd kill-define ?2?77?
dd define-define | ?77?
uu use-use 27?7
Kk Kill-Kill 2?77
d~ define last 277
u-~ use last ?77?
K~ Kill last ?277?

DFT-38

Potential Anomalies — static analysis — 3

Anomalies Explanation

~d first define Allowed — normal case
du define-use Allowed — normal case
dk define-Kill Potential bug

~ U first use Potential bug

ud use-define Allowed — redefine

uk use-kill Allowed — normal case
~ K first kill Serious defect

ku Kill-use Serious defect

DFT-39

Potential Anomalies — static analysis — 4

Anomalies Explanation

kd kill-define Allowed - redefined
dd define-define | Potential bug

uu use-use Allowed - normal case
Kk Kill-Kill Serious defect

d~ define last Potential bug

un~ use last Allowed- normal case
K ~ Kill last Allowed - normal case

DFT—40

Data flow guidelines

= When is dataflow analysis good to use?

DFT-41

Data flow guidelines — 2

= When is dataflow analysis good to use?

= Data flow testing is good for computationally/control
intensive programs

« If P-use of variables are computed, then P-use data
flow testing is good

= Define/use testing provides a rigorous, systematic way
to examine points at which faults may occur.

DFT—42

Data flow guidelines — 3

= Aliasing of variables causes serious problems!

= Working things out by hand for anything but small
methods is hopeless

= Compiler-based tools help in determining coverage values

DFT—43

