| Dataflow Testing

Chapter 9



Dataflow Testing

Testing All-Nodes and All-Edges in a control flow graph
may miss significant test cases

Testing All-Paths in a control flow graph is often too time-
consuming

Can we select a subset of these paths that will reveal the
most faults?

Dataflow Testing focuses on the points at which variables
receive values and the points at which these values are
used
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Dataflow Analysis

= Can reveal interesting bugs

A variable that is defined but never used
A variable that is used but never defined
A variable that is defined twice before it is used

Sending a modifier message to an object more than
once between accesses

Deallocating a variable before it is used

» Container problem

Deallocating container loses references to items in
the container, memory leak
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Definitions

= A node n in the program graph is a defining node for
variable v — DEF(v, n) — if the value of v is defined at the
statement fragment in that node

= Input, assighment, procedure calls

= A node in the program graph is a usage node for variable
v — USE(v, n) — if the value of v is used at the statement
fragment in that node

= Output, assignment, conditionals
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Definitions — 2

= A usage node is a predicate use, P-use, if variable v
appears in a predicate expression

= Always in nodes with outdegree = 2

= A usage node is a computation use, C-use, if variable v
appears in a computation

= Always in nodes with outdegree = 1
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Definitions — 3

= A node in the program is a kill node for a variable v —
KILL(v, n) —if the variable is deallocated at the statement
fragment in that node
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Example 2 — Billing program

calculateBill (usage : INTEGER) : INTEGER
double bill = 0;

if usage > 0 then bill = 40 fi
if usage > 100
then if usage = 200

then bill = bill + (usage — 100) *0.5

else bill = bill + 50 + (usage — 200) * 0.1

if bill = 100 then bill = bill * 0.9 fi
fi

fi

re bl = ~ Kill node for bill
end
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*Definition-Use path

= What is a du-path?

DFT-8



Definition-Use path — 2

= What is a du-path?

= A definition-use path, du-path, with respect to a variable
v is a path whose first node is a defining node for v, and
its last node is a usage node for v
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Definition clear path

= What is a dc-path?
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Definition clear path — 2

= What is a dc-path?

= A du-path with no other defining node for v is a
definition-clear path
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Example 1 — Max program

nt max — 0, /_

int jJ = s.nextInt();

max = J;
}
J

= s.nextInt();
} - Adefinition of j

System.out.println(max);
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Max program — analysis

Alint max = 0; dc-paths j
int j = s.nextInt(); AB
ABC

v u ABCD
while (j > 0) EB
l EBC

cr—"— u EBCD
1f (J > max)

Legend
A..F Segment name — u dc-paths max
d defining node for j max = j; ABF
u use node for j ABC

: : d
E j = s.nextInt(); gggg

System.out.println(max);
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Dataflow Coverage Metrics

= Based on these definitions we can define a set of
coverage metrics for a set of test cases

= We have already seen
= All-Nodes
= All-Edges
= All-Paths

= Data flow has additional test metrics for a set T of paths in
a program graph

= All assume that all paths in T are feasible
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All-Defs Criterion

s [he set T satisfies the All-Def criterion

= For every variable v, T contains a dc-path from
every defining node for v to at least one usage
node for v

= Not all use nodes need to be reached

VveV(P),nd € prog _graph(P) | DEF (v,nd)
*Jdnu € prog _graph(P) |USE (v,nu)
°dc _ path(nd,nu) €T
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All-Uses Criterion

s The set T satisfies the All-Uses criterion iff

= For every variable v, T contains dc-paths that start at
every defining node for v, and terminate at every usage
node for v

= Not DEF(v, n) x USE(v, n) — not possible to have a dc-
path from every defining node to every usage node

(Vv eV (P),nu€ prog _graph(P) |USE (v,nu)
*dnd € prog _ graph(P) | DEF (v,nd) ® dc _ path(nd,nu) €T)
A

all _defs_ criterion
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All-P-uses / Some-C-uses

s The set T satisfies the All-P-uses/Some-C-uses criterion iff

= For every variable v in the program P, T contains a dc-
path from every defining node of v to every P-use node
for v

» If a definition of v has no P-uses, a dc-path leads to
at least one C-use node for v

(Vv eV (P),nu€ prog _graph(P)| P _use(v,nu)
*dnd € prog _ graph(P) | DEF (v,nd) ® dc _ path(nd,nu) €T)
A

all _defs_ criterion
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All-C-uses / Some-P-uses

s [he test set T satisfies the All-C-uses/Some-P-uses
criterion iff

= For every variable v in the program P, T contains a dc-
path from every defining node of v to every C-use of v

« If a definition of v has no C-uses, a dc-path leads to
at least one P-use

(Vv eV (P),nu€ prog _graph(P) | C _use(v,nu)
*dnd € prog _ graph(P) | DEF (v,nd) ® dc _ path(nd,nu) €T)
A

all _defs _ criterion
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Miles-per-gallon Program

miles_per_gallon ( miles, gallons, price : INTEGER )
if gallons = 0 then

/| Watch for division by zero!!

Print(“You have “ + gallons + “gallons of gas”)
else if miles/gallons > 25

then print( “Excellent car. Your mpg is “
+ miles/gallon)

else print( “You must be going broke. Your mpg is “
+ miles/gallon + “ cost “ + gallons * price)

fi
end
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Miles-per-gallon Program — 2

= We want du- and dc-paths

= What do you do next?
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Mile-per-gallon Program — Segmented

gasguzzler (miles, gallons, price : INTEGER) A
if gallons = 0 then B
/ /| Watch for division by zero!! C
Print(“You have “ + gallons + “gallons of gas”)
else if miles/gallons > 25 D
then print( “Excellent car. Your mpg is “ E
+ miles/gallon)
else print( “You must be going broke. Your mpgis“ | F
+ miles/gallon + “ cost “ + gallons * price)
fi G
end
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Miles-per-gallon Program — 3

= We want du- and dc-paths

= What do you do next?
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i MPG program graph

What do you do now?

F

i E G
T/
F—_
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MPG program graph

Def miles,

gallons A
C-use gallons
P-use
gallons T— C
F C-use miles, gallons

P-use T ] E G
miles,
gallons

Possible F — F

C-use miles, gallons
But not common
practice

C-use miles, gallons, price
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Miles-per-gallon Program — 4

= We want du- and dc-paths

= What do you do next?
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Example du-paths

= For each variable in the miles_per_gallon program create
the test paths for the following dataflow path sets

= All-Defs (AD)

= All-C-uses (ACU)

= All-P-uses (APU)

= All-C-uses/Some-P-uses (ACU+P)
= All-P-uses/Some-C-uses (APU+C)

= All-uses
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MPG — DU-Paths for Miles

= All-Defs

= Each definition of each variable for at least one use of
the definition

« ABD

s All-C-uses

= At least one path of each variable to each c-use of the
definition

« ABDE ABDF ABD
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MPG — DU-Paths for Miles — 2

s All-P-uses

= At last one path of each variable to each p-use of the
definition

« ABD

m All-C-uses/Some-P-uses

= At least one path of each variable definition to each c-
use of the variable. If any variable definitions are not
covered use p-use

« ABDE ABDF ABD
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MPG — DU-Paths for Miles — 3

s All-P-uses/Some-C-uses

= At least one path of each variable definition to each p-
use of the variable. If any variable definitions are not
covered by p-use, then use c-use

« ABD

s All-uses

= At least one path of each variable definition to each p-
use and each c-use of the definition

« ABD ABDE ABDF
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MPG — DU-Paths for Gallons

= All-Defs

= Each definition of each variable for at least one use of the
definition

= AB
s All-C-uses

= At least one path of each variable to each c-use of the
definition

« ABC ABDE ABDF ABD
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MPG — DU-Paths for Gallons — 2

s All-P-uses

= At least one path of each variable definition to each p-
use of the definition

« AB ABD

m All-C-uses/Some-P-uses

= At least one path of each variable definition to each c-
use of the variable. If any variable definitions are not
covered by c-use, then use p-use

« ABC ABDE ABDF ABD
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MPG — DU-Paths for Gallons — 3

s All-P-uses/Some-C-uses

= At least one path of each variable definition to each p-
use of the variable. If any variable definitions are not
covered use c-use

« AB ABD

s All-uses

= At least one path of each variable definition to each p-
use and each c-use of the definition

« AB ABC ABD ABDE ABDF
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MPG — DU-Paths for Price

= All-Defs

= Each definition of each variable for at least one use of
the definition

« ABDF

s All-C-uses

= At least one path of each variable to each c-use of the
definition

« ABDF
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MPG — DU-Paths for Price — 2

s All-P-uses

= At least one path of each variable definition to each p-
use of the definition

= None

s All-C-uses/Some-P-uses

= At least one path of each variable definition to each c-
use of the variable. If any variable definitions are not
covered use p-use

« ABDF
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MPG — DU-Paths for Price — 2

s All-P-uses/Some-C-uses

= At least one path of each variable definition to each p-
use of the variable. If any variable definitions are not
covered use c-use

« ABDF

s All-uses

= At least one path of each variable definition to each p-
use and each c-use of the definition

« ABDF
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Rapps-Weyuker data flow hierarchy

-

All-Paths

A\ 4

All-DU-Paths

A\ 4

All-Uses

T~

All-C-uses
Some-P-uses

All-P-uses
Some-C-uses

All-Defs

~N., .

N\

All-P-uses

|

All-Edges

v

All-Nodes
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Potential Anomalies — static analysis

Data flow node combinations for a variable
Allowed? — Potential Bug? — Serious defect?

Anomalies Explanation
~d first define ?277?
du define-use ?277?
dk define-Kkill 277
~ U first use ?77?
ud use-define 277
uk use-Kkill ?7??
~ K first kill ?77?
Ku Kill-use 277
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Potential Anomalies — static analysis — 2

Data flow node combinations for a variable
Allowed? — Potential Bug? — Serious defect?

Anomalies Explanation
kd kill-define ?2?77?
dd define-define | ?77?
uu use-use 27?7
Kk Kill-Kill 2?77
d~ define last 277
u-~ use last ?77?
K~ Kill last ?277?

DFT-38



Potential Anomalies — static analysis — 3

Anomalies Explanation

~d first define Allowed — normal case
du define-use Allowed — normal case
dk define-Kill Potential bug

~ U first use Potential bug

ud use-define Allowed — redefine

uk use-kill Allowed — normal case
~ K first kill Serious defect

ku Kill-use Serious defect
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Potential Anomalies — static analysis — 4

Anomalies Explanation

kd kill-define Allowed - redefined
dd define-define | Potential bug

uu use-use Allowed - normal case
Kk Kill-Kill Serious defect

d~ define last Potential bug

un~ use last Allowed- normal case
K ~ Kill last Allowed - normal case
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Data flow guidelines

= When is dataflow analysis good to use?
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Data flow guidelines — 2

= When is dataflow analysis good to use?

= Data flow testing is good for computationally/control
intensive programs

« If P-use of variables are computed, then P-use data
flow testing is good

= Define/use testing provides a rigorous, systematic way
to examine points at which faults may occur.
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Data flow guidelines — 3

= Aliasing of variables causes serious problems!

= Working things out by hand for anything but small
methods is hopeless

= Compiler-based tools help in determining coverage values
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