
Structural Testing Review

Chapter 10

2

Measuring Gaps and
Redundancy

n  We have seen that functional testing
methods may produce test suites with
serious gaps and a lot of redundancy

n  Structural testing analysis allows to
measure the extent of these problems

3

Structural Metrics

n  A functional testing method M produces
m test cases

n  A structural metric S identifies s
coverage elements in the unit under
test

n  When the m test cases run, they
traverse n coverage elements

4

Metric definitions

n  Coverage of method M with respect to
metric S as C(M,S) = n/s

n  Redundancy of method M with respect
to metric S as R(M,S) = m/s

n  Net redundancy of method M with
respect to metric S as NR(M,S) = m/n

5

Metric values for Triangle

Method m n s C(M,S) R(M,S) NR(M,S)

Boundary
Value 15 7 11 0.64 1.36 2.14

Worst Case
Analysis 125 11 11 1.00 11.36 11.36

WN ECT 4 4 11 0.36 0.36 1.00

Decision
Table 8 8 11 0.72 0.72 1.00

6

Metric values for Commission

Method" m" n" s" C(M,S)" R(M,S)"

Output BVA" 25" 11" 11" 1" 2.27"

Decision
table" 3" 11" 11" 1" 0.27"

DD-path" 25" 11" 11" 1" 2.27"

DU-path" 25" 33" 33" 1" 0.76"

Slice" 25" 40" 40" 1" 0.63"

7

Coverage usefulness

n  100% coverage is never a guarantee of
bug-free software

n  Coverage reports can
n  point out inadequate test suites
n  suggest the presence of surprises, such as

blind spots in the test design
n  Help identify parts of the implementation

that require structural testing

8

Coverage example

n  TEX and AWK are widely used programs
with comprehensive test suites

n  Coverage analysis showed

System Segment Branch P-use C-use

TEX 85 72 53 48

AWK 70 59 48 55

9

Is 100% coverage possible?
n  Short-circuit evaluation
n  Mutually exclusive conditions

n  (x > 2) || (x < 10)

n  Redundant predicates
n  if (x == 0) do1; else do2;
if (x != 0) do3; else do4;

n  Dead code
n  “This should never happen”

10

How to measure coverage?

n  The source code is instrumented
n  Depending on the code coverage

model, code that writes to a trace file is
inserted in every branch, statement etc.

n  Most commercial tools measure
segment and branch coverage

11

FAQ about Coverage
n  Is 100% coverage the same as exhaustive

testing?
n  Are branch and path coverage the same?
n  Can path coverage be achieved?
n  Is every path in a control flow graph testable?
n  Is less than 100% coverage acceptable?
n  Can I trust a test suite without measuring

coverage?
n  When can I stop testing?

12

Some answers…
n  When you run out of time
n  When continued testing reveals no new faults
n  When you cannot think of any new test cases
n  When you reach a point of diminishing

returns
n  When mandated coverage has been attained
n  When all faults have been removed

13

A coverage counter-example
void Depository::give_change(int price)
{
 int n_100, n_25, n_10, n_5;
 if (deposit <= price) {
 change_due = 0;
 }
 else {
 change_due = deposit-price;
 n_100 = change_due / 100;
 change_due = change_due – n_100*100;
 n_25 = change_due / 25;
 change_due = change_due – n_25*25;
 n_10 = change_due / 10;
 change_due = change_due – n_10*10;
 n_5 = change_due / 10; // A cut-and paste bug
 }
}

