Automated GUI testing

. S

How to test an interactive
application automatically?

i Some GUI facts

= Software testing accounts for 50-60%
of total software development costs

s GUIs can constitute as much as 60% of
the code of an application

= GUI development frameworks such as
Swing make GUI development easier

= Unfortunately, they make GUI testing
much harder

i Why is GUI testing difficult?

= Event-driven architecture
= User actions create events
= An automatic test suite has to simulate these
events somehow
= Large space of possibilities
= The user may click on any pixel on the screen

= Even the simplest components have a large
number of attributes and methods
= JButton has more than 50 attributes and 200 methods

= The state of the GUI is a combination of the states
of all of its components

i Challenges of GUI testing

Test case generation: What combinations
of user actions to try?

Oracles: What is the expected GUI
behaviour?

Coverage: How much testing is enough?

Regression testing: Can test cases from an
earlier version be re-used?

Representation: How to represent the GUI
to handle all the above?

PeXe e 203 4 5B o

- Some texXt
BEER] |

Page 1 1f1 At 25cm Ln 1 Col 10

1. Select text “Some”
2. Menu “Format”
3. Option “Font”

Font

Font I Character Spacing I Text Effects I

?X

Font: Font style: Size:
Courier New] [Reqular 26
20
22 =
24
v

Font color: Underline style: '

| Automatic j I(none} L] I j
Effects

I Strikethrough I” Shadow [~ Small caps

I Double strikethrough ™ outline ™ all caps

I Superscript I” Emboss I Hidden

I~ Subscript I~ Engrave
Preview

This is a TrueType font. This font will be used on both printer and screen.

Default... | | oK I

Cancel

iA GUI Test Case

4. Combobox “Size”
5. Click on 26
6. Click OK

iA GUI Test Case

=l Document1 - Microsoft Word

File Edit View Insert Format Tools Table ‘Window Help Acrobat
DeEa gV R o-@d w% -~-@ 2 u?
prd

L 3-:-2-:-1-1-5-|-1-|-2-|-3-|-4-|-5-|-s-|-?-|

7. Select “text”

8. Click U

9. Verify that the
output looks
like this

L BRI (I R ST |

SOme text
= |

11

N

At 25cm Ln 1 Col 10

i GUI vs. business model testing

= GUI testing

= The look of the text in the editor window
corresponds to the operations performed

= The U button is selected

= All appropriate actions are still enabled, i.e.
we can italicize the underlined text

= Business model testing

= Word’ s internal model reflects the text
formatting we performed

iTwo approaches to GUI testing

1. Black box

= Launch application
« Simulate mouse and keyboard events

= Compare final look to an existing screen
dump
= Very brittle test cases
= Cannot test business model
= Framework independent

i Two approaches to GUI testing

2. Glass box
= Launch application in the testing code

= Obtain references to the various
components and send events to them

= Assert the state of components directly
= Test cases harder to break

= Business model can be tested
= Framework dependent

10

i A first approach

= The Java API provides a class called
java.awt.Robot

= It can be used to generate native
system input events

» Different than creating Event objects and
adding them to the AWT event queue

= These events will indeed move the mouse,
click, etc.

11

iRobotDemo

File Edit Source Refactor Mavigate

ci-H & 3%-0-Q-
Package Ex... | Hierarchy = JuJUnit &2
ArrowButtonTest

@, &8

Runs: 0/0 B Errors: 0 B Failur

£ Java - RobotDemo. java - Eclipse Platform

Search Project Run Window Help
BHG- | ®P| SR -G

'é 1| [J] ArrowButton.java ArrowButtonTest. java

RobotDemo.java X

v

-import java.awt.*; N
« o | 1lmport java.awt.event.*;

pPFailures | [ffsHierarchy

= Failure Trace

import javax.swing.*;

-public class RobotDemo ({
- public static void mai
t

// set up frames and

TR v»ama 'F'l»:'r"na - naur .TR'¥Y
‘ >

Problems | Javadoc | Declaration | El Console 52 =

ArrowButtonTest (1) [JUnit] C:\Program Files\Java\j2rel.4.2_07\bin\javaw.exe (Mar 14, 2005 6:01:44 PM)

‘Writable Smart Insert Sz Launching:

EIB

F5 | &J1ava [(SResource

5% outline 52 =8

AR Y e w v
= *= import declarations
4 java.awt*
4~ java.awt.event,*
4 javax.swing.*
= @, RobotDemo
= @ ° main(String[])
= Q new ActionListen
@ . actionPerfor
=] Q new ActionListen
@ . actionPerfor

Bl 4|t B-=0

(50%) (1] en

12

iTesting with Robot

= User input can be simulated by the
robot

= How to evaluate that the correct GUI
behaviour has taken place?

= Robot includes method
public Bufferedimage
createScreenCapture(Rectangle screenRe
ct)

= Creates an image containing pixels read
from the screen

13

iProbIems with this approach

= Low-level

= Would rather say “Select "blue" from the
colour list” than

Move to the colour list

co-ordinates
Click

Press | 5 times
Click

= Brittle test cases (regression impossible)

14

i A better approach

= Every GUI component should provide a
public API which can be invoked in the

same manner via a system user event
or programmatically

= Component behaviour should be
separated from event handling code

= For example, class JButton contains the
doClick() method

15

i Unfortunately...

= Most GUI development frameworks are
not designed in this fashion

= In Swing, event handling is mixed with
complex component behaviour in the
Look and Feel code

= Few components offer methods such as
doClick()

16

i Abbot — A Better ’ Bot

= A GUI testing framework for Swing

= Works seamlessly with Junit
= Uses some Junit 3 features

= Can be used to create

= Unit tests for GUI components

= Functional tests for existing GUI apps
= Open source

» http://abbot.sourceforge.net/

17

i Goals of the Abbot framework

= Reliable reproduction of user input
= High-level semantic actions

= Scripted control of actions

= Loose component bindings

18

i Abbot overview

= A better Robot class is provided

= abbot.tester.Robot includes events to click, drag,
type on any component

= For each Swing widget a corresponding
Tester class is provided

=« E.g. JPopupMenuTester provides a method called
getMenulLabels()

= Components can be retrieved from the

component hierarchy
= No direct reference to any widget is necessary

19

i A typical test case

JButton button
new Matcher () {
public boolean matches (Component c) {
return ¢ instanceof JButton &&
((JButton)c) .getText () .equals ("OK") ;

(JButton)getFinder () . find (

1))

AbstractButtonTester tester =
new AbstractButtonTester() ;
Tester.actionClick (button) ;
assertEquals ("Wrong button tooltip",
"Click to accept", button.getToolTipText())

20

iTesting with Abbot demo

va - ArrowButtonTest. java - Eclipse Platform

File Edit Source Refactor Mavigate Search Project Run Window Help

M-H@ |3 -0-Q- | BH6- B9 | SB |8 -F -0e-o- | §'3eve BoResource
Package Ex... |Hierarchy | JuJunit &2 = B || [J] arrowButton.java B ArowButtonTest.java X [J] RobotDema.java £ 2% outline 52 =08
ArrowButtonTest - ~ la & \Q\S @ \@1' -
. ——] z
o package example; i
#-“= import declarations
Runs: 0/0 B Errors: 0 B Failures: 0 o [= GK, ArrowButtonTest
. . o tester : ComponentTe
< Ll
rimport java.awt.event.*; S
B . o gotClick : String
@~ Failures @EHievarchy i ;
=l @ testClick()
=G4 new ActionListen

@ . actionPerfol

-public class ArrowButtor Sl

-l @ testRepeatedFire()

extends ComponentTestE TR o v
.] ; Arr.owBulttonTest(Strir
// ComponentTestFixtur o man(srna[)

private ComponentTeste
- protected void setUp()

'|-nc'|-‘nv~ - CAmrnAanantTev ‘
< 0 > < >

= Failure Trace (5

Problems | Javadoc | Declaration | B console 532 ; Eﬁ |2 ~-=0
ArrowButtonTest {1) [JUnit] C:\Program Files\Java\j2rel.4.2_07\binijavaw.exe (Mar 14, 2005 7:55:06 PM)

‘Writable Smart Insert 86:1

iJUnit 3 features

= Abbot requires JUnit 3

= Only the differences between JUnit 3
and JUnit 4 are presented in the next
slides

= The JUnit 3 jar file is included in the
abbot distribution

22

iExtending TestCase

s Each test class needs to extend class
junit.framework.TestCase

public class SomeClassTest
extends junit.framework.TestCase {

23

iNaming vS. Annotations

m protected void setUp()
=« The @Before method must have this signature

m protected void tearDown()

s T
N pUb
pub
= A

ne @After method must have this signature

ic void testAdd()
ic void testToString()

| @Test methods must have names that start

with test
= Do not include any annotations

24

iTest suite creation

= Creating a test suite with JUnit 3 is also
different

s Use the code in the next slide as a
template

25

import junit.framework.*;

public class AllTests {

public static void main(String[] args) {
junit.swingui.TestRunner.run(AllTests.class);

public static Test suite() {

TestSuite suite = new TestSuite(Name");
sulte.addTestSuite(TestClassl.class);

sulte.addTestSuite(TestClass2.class);
return suite;

