Automated GUI testing

. S

How to test an interactive
application automatically?




i Some GUI facts

= Software testing accounts for 50-60%
of total software development costs

s GUIs can constitute as much as 60% of
the code of an application

= GUI development frameworks such as
Swing make GUI development easier

= Unfortunately, they make GUI testing
much harder



i Why is GUI testing difficult?

= Event-driven architecture
= User actions create events
= An automatic test suite has to simulate these
events somehow
= Large space of possibilities
= The user may click on any pixel on the screen

= Even the simplest components have a large
number of attributes and methods
= JButton has more than 50 attributes and 200 methods

= The state of the GUI is a combination of the states
of all of its components



i Challenges of GUI testing

Test case generation: What combinations
of user actions to try?

Oracles: What is the expected GUI
behaviour?

Coverage: How much testing is enough?

Regression testing: Can test cases from an
earlier version be re-used?

Representation: How to represent the GUI
to handle all the above?
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1. Select text “Some”
2. Menu “Format”
3. Option “Font”
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iA GUI Test Case

4. Combobox “Size”
5. Click on 26
6. Click OK




iA GUI Test Case
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i GUI vs. business model testing

= GUI testing

= The look of the text in the editor window
corresponds to the operations performed

= The U button is selected

= All appropriate actions are still enabled, i.e.
we can italicize the underlined text

= Business model testing

= Word’ s internal model reflects the text
formatting we performed




iTwo approaches to GUI testing

1. Black box

= Launch application
« Simulate mouse and keyboard events

= Compare final look to an existing screen
dump
= Very brittle test cases
= Cannot test business model
= Framework independent



i Two approaches to GUI testing

2. Glass box
= Launch application in the testing code

= Obtain references to the various
components and send events to them

= Assert the state of components directly
= Test cases harder to break

= Business model can be tested
= Framework dependent
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i A first approach

= The Java API provides a class called
java.awt.Robot

= It can be used to generate native
system input events

» Different than creating Event objects and
adding them to the AWT event queue

= These events will indeed move the mouse,
click, etc.
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iRobotDemo
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iTesting with Robot

= User input can be simulated by the
robot

= How to evaluate that the correct GUI
behaviour has taken place?

= Robot includes method
public Bufferedimage
createScreenCapture(Rectangle screenRe
ct)

= Creates an image containing pixels read
from the screen
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iProbIems with this approach

= Low-level

= Would rather say “Select "blue" from the
colour list” than

Move to the colour list

co-ordinates
Click

Press | 5 times
Click

= Brittle test cases (regression impossible)
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i A better approach

= Every GUI component should provide a
public API which can be invoked in the

same manner via a system user event
or programmatically

= Component behaviour should be
separated from event handling code

= For example, class JButton contains the
doClick() method
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i Unfortunately...

= Most GUI development frameworks are
not designed in this fashion

= In Swing, event handling is mixed with
complex component behaviour in the
Look and Feel code

= Few components offer methods such as
doClick()
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i Abbot — A Better ’ Bot

= A GUI testing framework for Swing

= Works seamlessly with Junit
= Uses some Junit 3 features

= Can be used to create

= Unit tests for GUI components

= Functional tests for existing GUI apps
= Open source

» http://abbot.sourceforge.net/

17



i Goals of the Abbot framework

= Reliable reproduction of user input
= High-level semantic actions

= Scripted control of actions

= Loose component bindings
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i Abbot overview

= A better Robot class is provided

= abbot.tester.Robot includes events to click, drag,
type on any component

= For each Swing widget a corresponding
Tester class is provided

=« E.g. JPopupMenuTester provides a method called
getMenulLabels()

= Components can be retrieved from the

component hierarchy
= No direct reference to any widget is necessary
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i A typical test case

JButton button
new Matcher () {
public boolean matches (Component c) {
return ¢ instanceof JButton &&
( (JButton)c) .getText () .equals ("OK") ;

(JButton)getFinder () . find (

1))

AbstractButtonTester tester =
new AbstractButtonTester() ;
Tester.actionClick (button) ;
assertEquals ("Wrong button tooltip",
"Click to accept", button.getToolTipText())
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iTesting with Abbot demo
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iJUnit 3 features

= Abbot requires JUnit 3

= Only the differences between JUnit 3
and JUnit 4 are presented in the next
slides

= The JUnit 3 jar file is included in the
abbot distribution
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iExtending TestCase

s Each test class needs to extend class
junit.framework.TestCase

public class SomeClassTest
extends junit.framework.TestCase {
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iNaming vS. Annotations

m protected void setUp()
=« The @Before method must have this signature

m protected void tearDown()

s T
N pUb
pub
= A

ne @After method must have this signature

ic void testAdd()
ic void testToString()

| @Test methods must have names that start

with test
= Do not include any annotations
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iTest suite creation

= Creating a test suite with JUnit 3 is also
different

s Use the code in the next slide as a
template
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import junit.framework.*;

public class AllTests {

public static void main(String[] args) {
junit.swingui.TestRunner.run(AllTests.class);

public static Test suite() {

TestSuite suite = new TestSuite( Name");
sulte.addTestSuite(TestClassl.class);

sulte.addTestSuite(TestClass2.class);
return suite;



