!'_ Mutation Testing

Breaking the application to test it

i What is Mutation Testing?

= Mutation Testing is a testing technique that
focuses on measuring the adequacy of test

CaSes

= Mutation Testing is NOT a testing strategy
like Boundary Value or Data Flow Testing. It
does not outline test data selection criteria

= Mutation Testing should be used in
conjunction with traditional testing
techniques, not instead of them

i Mutation Testing

= Faults are introduced into the program by
creating many versions of the program called
mutants

= Each mutant contains a single fault
= [est cases are applied to the original program
and to the mutant program

= The goal is to cause the mutant program to
fail, thus demonstrating the effectiveness of

the test suite

i Test Case Adequacy

= A test case is adequate if it is useful in
detecting faults in a program.

= A test case can be shown to be adequate by
finding at least one mutant program that
generates a different output than does the
original program for that test case.

= If the original program and all mutant
programs generate the same output, the test
case is inadequate.

i Mutant Programs

= Mutation testing involves the creation of
a set of mutant programs of the
program being tested

= Each mutant differs from the original
program by one mutation

= A mutation is a single syntactic change
that is made to a program statement

i Example Mutation

1 int max(int x, int y) 1 int max(int x, int y)

2 { 2 {

3 int mx = Xx; 3 int mx = Xx;
4 if (x > vy)] <

5 mx ZX: 54 ,fn—{f: x;X)
6 else 6 else

7 mx=y; 7 mx=y;

8 refurn mx; 8 return mx;
9} 9}

i Mutation Operators

= Operand Replacement Operators:

= Replace a single operand with another operand or
constant. E.g.,
« if (5>y) Replacing x by constant 5.
= if (x >5) Replacing y by constant 5.
« if (y >Xx) Replacing x and y with each other.

« E.qg., if all operators are {+,-,*,**,/} then the
following expression a = b * (c - d) will generate 8
mutants:

= 4 by replacing *
= 4 by replacing -.

i Mutation Operators

= Expression Modification Operators:

= Replace an operator or insert new
operators. E.g.,
 if (X ==y)
 if (X >=y) Replacing == by >=,
o if (X == ++Y) Inserting ++.

i Mutation Operators

= Statement Modification Operators:
= Delete the else part of an if-else statement.
= Delete the entire if-else statement.
= Replace line 3 by a return statement.

i Mutation Operators

= The Mothra mutation system for FORTRAN77
supports 22 mutation operators

= Absolute value insertion

= Constant for array reference replacement
=« GOTO label replacement

= Statement deletion

= Unary operator insertion

= Logical connector replacement

10

Why Does Mutation Testing

i Work?

= The operators are limited to simple
single syntactic changes on the basis of
the competent programmer hypothesis

11

The Competent Programmer
i Hypothesis

= Programmers are generally very competent
and do not create “random” programs.

= For a given problem, a programmer, if
mistaken, will create a program that is very
close to a correct program.

= An incorrect program can be created from a
correct program by making some minor
change to the correct program.

12

i Mutation Testing Algorithm

= Generate program test cases

= Run each test case against the original
program

« If the output is incorrect, the program must be
modified and re-tested

« If the output is correct go to the next step ...

= Construct mutants using a mutation testing
tool

13

i Mutation Testing Algorithm

= EXxecute each test case against each alive
mutant
= If the output of the mutant differs from the output
of the original program, the mutant is considered
incorrect and is killed
= Two kinds of mutants survive:

= Functionally equivalent to the original program:
Cannot be killed

= Killable: Test cases are insufficient to kill the
mutant. New test cases must be created.

14

i Mutation Score

= The mutation score for a set of test cases is

the percentage of non-equivalent mutants
killed by the test data

= Mutation Score = 100 *D / (N - E)
= D = Dead mutants
= N = Number of mutants
= E = Number of equivalent mutants

= A set of test cases is mutation adequate if its
mutation score is 100%.

15

i Evaluation

= Theoretical and experimental results
have shown that mutation testing is an
effective approach to measuring the
adequacy of test cases.

= The major drawback of mutation testing
is the cost of generating the mutants
and executing each test case against
them.

16

i Mutation Testing Costs

= The FORTRAN 77 version of the max()
program generated 44 mutants using Mothra.

= Most efforts on mutation testing have focused
on reducing its cost by reducing the number
of mutants while maintaining the
effectiveness of the technique.

17

PIT Demo

Pit Test Coverage Report

Project Summary

Number of Classes Line Coverage Mutation Coverage
5 45% 228/512 33% 129/389
Breakdown by Package

Name Number of Classes Line Coverage Mutation Coverage
mojo 4 45% 228/504 34% 129/384
testmojo 1 0% 0/8 0% 0/5

Report generated by PIT 1.1.4

18

i Program Perturbation

= Program Perturbation is a technique to
test a program’ s robustness.

= It is based on unexpectedly changing
the values of program data during run-
time.

19

i Software Failure Hypothesis

= Program perturbation is based on the
three part software failure hypothesis:

=« Reachability: The fault must be
executed.

« Infection: The fault must change the data
state of the computation directly after the
fault location.

= Propagation: The erroneous data state
must propagate to an output variable.

20

i Program Perturbation Process

= | he tester must:

= inject faults in the data state of an
executing program;

= trace the impact of the injected fault on
the program’ s output.

= The injection is performed by applying a
perturbation function that changes the
program’ s data state.

21

iThe Perturbation Function

= The perturbation function is a
mathematical function that:

= takes a data state as its input

= changes the data state according to some
specified criteria

= produces a modified data state as output

22

i The Fault Injection

= A program location N is chosen along with a
set of input variables I that are in scope at
location M.

= The program is executed until location M.

= When execution arrives at location N, the
resulting data state is changed (perturbed).

= The subsequent execution will either fail or
succeed.

23

iProgram Perturbation Example

= Assume the following perturbation
function:

int perturbation (int x)
A

. int newX:;

. hewX = x + 20;

. return newX;

.}

O WN =

24

i Example of a Fault Injection

A

.}

. main()

. int x;
. X = ReadInt();
. if (x > 0)

printf(“X positive”);

. else

printf(“X negative”);

main()
{
int x;
x = ReadInt();
X = perturbation(x);
if (x > 0)
printf(“X positive”);
else
printf(“X negative”);

(WY

WONSO R Bwh=

)

25

What Perturbation Testing

i IS and is Not

= Perturbation testing is NOT a testing
technique that outlines test selection
and coverage criteria.

= Rather, perturbation testing is a
technique that can be used to measure
the reliability of the software (tolerance
to faults).

26

i Evaluation

= The program is repeatedly executed
and injected with faults during each
execution.

= The ratio of the number of failures
detected divided by the total number of
executions is used to predict failure
tolerance.

27

