!'_ Mutation Testing

Breaking the application to test it




i What is Mutation Testing?

= Mutation Testing is a testing technique that
focuses on measuring the adequacy of test

CaSes

= Mutation Testing is NOT a testing strategy
like Boundary Value or Data Flow Testing. It
does not outline test data selection criteria

= Mutation Testing should be used in
conjunction with traditional testing
techniques, not instead of them




i Mutation Testing

= Faults are introduced into the program by
creating many versions of the program called
mutants

= Each mutant contains a single fault
= [est cases are applied to the original program
and to the mutant program

= The goal is to cause the mutant program to
fail, thus demonstrating the effectiveness of

the test suite




i Test Case Adequacy

= A test case is adequate if it is useful in
detecting faults in a program.

= A test case can be shown to be adequate by
finding at least one mutant program that
generates a different output than does the
original program for that test case.

= If the original program and all mutant
programs generate the same output, the test
case is inadequate.




i Mutant Programs

= Mutation testing involves the creation of
a set of mutant programs of the
program being tested

= Each mutant differs from the original
program by one mutation

= A mutation is a single syntactic change
that is made to a program statement




i Example Mutation

1 int max(int x, int y) 1 int max(int x, int y)

2 { 2 {

3 int mx = Xx; 3 int mx = Xx;
4 if (x > vy) ] <

5 mx ZX: 54 ,fn—{f: x;X)
6 else 6 else

7 mx=y; 7 mx=y;

8 refurn mx; 8 return mx;
9} 9}



i Mutation Operators

= Operand Replacement Operators:

= Replace a single operand with another operand or
constant. E.g.,
« if (5>y) Replacing x by constant 5.
= if (x >5) Replacing y by constant 5.
« if (y >Xx) Replacing x and y with each other.

« E.qg., if all operators are {+,-,*,**,/} then the
following expression a = b * (c - d) will generate 8
mutants:

= 4 by replacing *
= 4 by replacing -.



i Mutation Operators

= Expression Modification Operators:

= Replace an operator or insert new
operators. E.g.,
 if (X ==y)
 if (X >=y) Replacing == by >=,
o if (X == ++Y) Inserting ++.



i Mutation Operators

= Statement Modification Operators:
= Delete the else part of an if-else statement.
= Delete the entire if-else statement.
= Replace line 3 by a return statement.



i Mutation Operators

= The Mothra mutation system for FORTRAN77
supports 22 mutation operators

= Absolute value insertion

= Constant for array reference replacement
=« GOTO label replacement

= Statement deletion

= Unary operator insertion

= Logical connector replacement
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Why Does Mutation Testing

i Work?

= The operators are limited to simple
single syntactic changes on the basis of
the competent programmer hypothesis
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The Competent Programmer
i Hypothesis

= Programmers are generally very competent
and do not create “random” programs.

= For a given problem, a programmer, if
mistaken, will create a program that is very
close to a correct program.

= An incorrect program can be created from a
correct program by making some minor
change to the correct program.
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i Mutation Testing Algorithm

= Generate program test cases

= Run each test case against the original
program

« If the output is incorrect, the program must be
modified and re-tested

« If the output is correct go to the next step ...

= Construct mutants using a mutation testing
tool
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i Mutation Testing Algorithm

= EXxecute each test case against each alive
mutant
= If the output of the mutant differs from the output
of the original program, the mutant is considered
incorrect and is killed
= Two kinds of mutants survive:

= Functionally equivalent to the original program:
Cannot be killed

= Killable: Test cases are insufficient to kill the
mutant. New test cases must be created.
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i Mutation Score

= The mutation score for a set of test cases is

the percentage of non-equivalent mutants
killed by the test data

= Mutation Score = 100 *D / (N - E)
= D = Dead mutants
= N = Number of mutants
= E = Number of equivalent mutants

= A set of test cases is mutation adequate if its
mutation score is 100%.
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i Evaluation

= Theoretical and experimental results
have shown that mutation testing is an
effective approach to measuring the
adequacy of test cases.

= The major drawback of mutation testing
is the cost of generating the mutants
and executing each test case against
them.

16



i Mutation Testing Costs

= The FORTRAN 77 version of the max()
program generated 44 mutants using Mothra.

= Most efforts on mutation testing have focused
on reducing its cost by reducing the number
of mutants while maintaining the
effectiveness of the technique.
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PIT Demo

Pit Test Coverage Report

Project Summary

Number of Classes Line Coverage Mutation Coverage
5 45% 228/512 33% 129/389
Breakdown by Package

Name Number of Classes Line Coverage Mutation Coverage
mojo 4 45% 228/504 34% 129/384
testmojo 1 0% 0/8 0% 0/5

Report generated by PIT 1.1.4
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i Program Perturbation

= Program Perturbation is a technique to
test a program’ s robustness.

= It is based on unexpectedly changing
the values of program data during run-
time.
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i Software Failure Hypothesis

= Program perturbation is based on the
three part software failure hypothesis:

=« Reachability: The fault must be
executed.

« Infection: The fault must change the data
state of the computation directly after the
fault location.

= Propagation: The erroneous data state
must propagate to an output variable.
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i Program Perturbation Process

= | he tester must:

= inject faults in the data state of an
executing program;

= trace the impact of the injected fault on
the program’ s output.

= The injection is performed by applying a
perturbation function that changes the
program’ s data state.
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iThe Perturbation Function

= The perturbation function is a
mathematical function that:

= takes a data state as its input

= changes the data state according to some
specified criteria

= produces a modified data state as output
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i The Fault Injection

= A program location N is chosen along with a
set of input variables I that are in scope at
location M.

= The program is executed until location M.

= When execution arrives at location N, the
resulting data state is changed (perturbed).

= The subsequent execution will either fail or
succeed.
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iProgram Perturbation Example

= Assume the following perturbation
function:

int perturbation (int x)
A

. int newX:;

. hewX = x + 20;

. return newX;

.}

O WN =
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i Example of a Fault Injection

A

.}

. main()

. int x;
. X = ReadInt();
. if (x > 0)

printf(“X positive”);

. else

printf(“X negative”);

main()
{
int x;
x = ReadInt();
X = perturbation(x);
if (x > 0)
printf(“X positive”);
else
printf(“X negative”);

(WY

WONSO R Bwh=

)
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What Perturbation Testing

i IS and is Not

= Perturbation testing is NOT a testing
technique that outlines test selection
and coverage criteria.

= Rather, perturbation testing is a
technique that can be used to measure
the reliability of the software (tolerance
to faults).
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i Evaluation

= The program is repeatedly executed
and injected with faults during each
execution.

= The ratio of the number of failures
detected divided by the total number of
executions is used to predict failure
tolerance.
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