
1

Mutation Testing

Breaking the application to test it

2

What is Mutation Testing?
n  Mutation Testing is a testing technique that

focuses on measuring the adequacy of test
cases

n  Mutation Testing is NOT a testing strategy
like Boundary Value or Data Flow Testing. It
does not outline test data selection criteria

n  Mutation Testing should be used in
conjunction with traditional testing
techniques, not instead of them

3

Mutation Testing
n  Faults are introduced into the program by

creating many versions of the program called
mutants

n  Each mutant contains a single fault
n  Test cases are applied to the original program

and to the mutant program
n  The goal is to cause the mutant program to

fail, thus demonstrating the effectiveness of
the test suite

4

Test Case Adequacy
n  A test case is adequate if it is useful in

detecting faults in a program.
n  A test case can be shown to be adequate by

finding at least one mutant program that
generates a different output than does the
original program for that test case.

n  If the original program and all mutant
programs generate the same output, the test
case is inadequate.

5

Mutant Programs

n  Mutation testing involves the creation of
a set of mutant programs of the
program being tested

n  Each mutant differs from the original
program by one mutation

n  A mutation is a single syntactic change
that is made to a program statement

6

Example Mutation

1 int max(int x, int y)
2 {
3 int mx = x;
4 if (x > y)
5 mx = x;
6 else
7 mx = y;
8 return mx;
9 }

1 int max(int x, int y)
2 {
3 int mx = x;
4 if (x < y)
5 mx = x;
6 else
7 mx = y;
8 return mx;
9 }

2

7

Mutation Operators
n  Operand Replacement Operators:

n  Replace a single operand with another operand or
constant. E.g.,

n  if (5 > y) Replacing x by constant 5.
n  if (x > 5) Replacing y by constant 5.
n  if (y > x) Replacing x and y with each other.

n  E.g., if all operators are {+,-,*,**,/} then the
following expression a = b * (c - d) will generate 8
mutants:

n  4 by replacing *
n  4 by replacing -.

8

Mutation Operators

n  Expression Modification Operators:
n  Replace an operator or insert new

operators. E.g.,
n  if (x == y)
n  if (x >= y) Replacing == by >=.
n  if (x == ++y) Inserting ++.

9

Mutation Operators

n  Statement Modification Operators:
n  Delete the else part of an if-else statement.
n  Delete the entire if-else statement.
n  Replace line 3 by a return statement.

10

Mutation Operators
n  The Mothra mutation system for FORTRAN77

supports 22 mutation operators
n  Absolute value insertion
n  Constant for array reference replacement
n  GOTO label replacement
n  Statement deletion
n  Unary operator insertion
n  Logical connector replacement

11

Why Does Mutation Testing
Work?

n  The operators are limited to simple
single syntactic changes on the basis of
the competent programmer hypothesis

12

The Competent Programmer
Hypothesis
n  Programmers are generally very competent

and do not create “random” programs.
n  For a given problem, a programmer, if

mistaken, will create a program that is very
close to a correct program.

n  An incorrect program can be created from a
correct program by making some minor
change to the correct program.

3

13

Mutation Testing Algorithm
n  Generate program test cases
n  Run each test case against the original

program
n  If the output is incorrect, the program must be

modified and re-tested
n  If the output is correct go to the next step ...

n  Construct mutants using a mutation testing
tool

14

Mutation Testing Algorithm
n  Execute each test case against each alive

mutant
n  If the output of the mutant differs from the output

of the original program, the mutant is considered
incorrect and is killed

n  Two kinds of mutants survive:
n  Functionally equivalent to the original program:

Cannot be killed
n  Killable: Test cases are insufficient to kill the

mutant. New test cases must be created.

15

Mutation Score
n  The mutation score for a set of test cases is

the percentage of non-equivalent mutants
killed by the test data

n  Mutation Score = 100 * D / (N - E)
n  D = Dead mutants
n  N = Number of mutants
n  E = Number of equivalent mutants

n  A set of test cases is mutation adequate if its
mutation score is 100%.

16

Evaluation

n  Theoretical and experimental results
have shown that mutation testing is an
effective approach to measuring the
adequacy of test cases.

n  The major drawback of mutation testing
is the cost of generating the mutants
and executing each test case against
them.

17

Mutation Testing Costs
n  The FORTRAN 77 version of the max()

program generated 44 mutants using Mothra.
n  Most efforts on mutation testing have focused

on reducing its cost by reducing the number
of mutants while maintaining the
effectiveness of the technique.

PIT Demo

18

4

19

Program Perturbation

n  Program Perturbation is a technique to
test a program’s robustness.

n  It is based on unexpectedly changing
the values of program data during run-
time.

20

Software Failure Hypothesis
n  Program perturbation is based on the

three part software failure hypothesis:
n  Reachability: The fault must be

executed.
n  Infection: The fault must change the data

state of the computation directly after the
fault location.

n  Propagation: The erroneous data state
must propagate to an output variable.

21

Program Perturbation Process

n  The tester must:
n  inject faults in the data state of an

executing program;
n  trace the impact of the injected fault on

the program’s output.

n  The injection is performed by applying a
perturbation function that changes the
program’s data state.

22

The Perturbation Function

n  The perturbation function is a
mathematical function that:
n  takes a data state as its input
n  changes the data state according to some

specified criteria
n  produces a modified data state as output

23

The Fault Injection
n  A program location N is chosen along with a

set of input variables I that are in scope at
location N.

n  The program is executed until location N.
n  When execution arrives at location N, the

resulting data state is changed (perturbed).
n  The subsequent execution will either fail or

succeed.

24

1. int perturbation (int x)
2. {
3. int newX;
4. newX = x + 20;
5. return newX;
6. }

Program Perturbation Example

n  Assume the following perturbation
function:

5

25

Example of a Fault Injection

1. main()
2. {
3. int x;
4. x = ReadInt();
5. if (x > 0)
6. printf(“X positive”);
7. else
8. printf(“X negative”);
9. }

1. main()
2. {
3. int x;
4. x = ReadInt();
4.1 x = perturbation(x);
5. if (x > 0)
6. printf(“X positive”);
7. else
8. printf(“X negative”);
9. }

26

What Perturbation Testing
is and is Not

n  Perturbation testing is NOT a testing
technique that outlines test selection
and coverage criteria.

n  Rather, perturbation testing is a
technique that can be used to measure
the reliability of the software (tolerance
to faults).

27

Evaluation

n  The program is repeatedly executed
and injected with faults during each
execution.

n  The ratio of the number of failures
detected divided by the total number of
executions is used to predict failure
tolerance.

