
Lab 3 - Injection
CSE 4481 4.0 Computer Security Lab, Winter 2015

Due: Sunday, Feb 2th, 2015, 11:59pm.

Format: Individual

Learning Objective: To understand various injection problems such as command injection, code

injection etc. Injection attack is the exploitation of software bugs caused by processing invalid

data. The goal of this lab is to study ways to exploit different injection vulnerabilities and demon-

strate the damage that can be achieved by such an attack.

Task 1

The following program runs with root privileges and is supposed to execute the /bin/ls com-

mand. However, the programmer only uses the relative path for the ls command, rather than the

absolute path:

int main()

{

system("ls");

return 0;

}

Utilizing this program, devise a way to run arbitrary code with root privileges. Also, devise a

way to get a root shell.

Report: Describe the process you followed to achieve the two goals above.

Task 2

Bob works for an auditing agency, and he needs to investigate a company for suspected fraud.

For the purposes of the investigation, Bob needs to be able to read all the files in the company’s

Unix system. On the other hand, to protect the integrity of the system, Bob should not be able

1



to modify any file. To achieve this goal, Vince, the superuser of the system, wrote a special set-

root-uid program (see below), and then gave the executable permission to Bob. This program

requires Bob to type a file name at the command line, and then it will run /bin/cat to display

the specified file.

Since the program is running as root, it can display any file Bob specifies. However, since the

program has no write operations, Vince is very sure that Bob cannot use this special program to

modify any file. Your goal is to check whether Bob can compromise the integrity of the system. If

the program has security bugs, you should fix them.

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

char *v[3];

if(argc < 2) {

printf("Please type a file name.\n");

return 1;

}

v[0] = "/bin/cat"; v[1] = argv[1]; v[2] = 0;

char *command = malloc(strlen(v[0]) + strlen(v[1]) + 2);

sprintf(command, "%s %s", v[0], v[1]);

system(command);

return 0 ;

}

Report: Explain any attacks you devised, and provide the modified source code that fixes the

problems.

Task 3

Let us assume that a developer wrote the following code.

2



int main()

{

sleep(1);

return 0;

}

How can you make this application print ”I am not sleeping” without changing the code? Hint:

LD_PRELOAD adjusts the runtime linking process by searching for shared libraries at alternative

locations.

How can you prevent such an attack (without using static linkage)? Hint: investigate the

conditions for the run-time linker to ignore LD_PRELOAD.

Report: Provide answers to the questions above.

Task 4

On the course website, you can download a simple Java application that checks whether a user is

allowed to enter a casino. Your goal is to:

1. Hack the application in such a way that a user can log-on into the casino with any password.

2. Discover the original password(s) of the casino application.

Hint: Review the Java code signature tutorials and the obfuscated code and Java decompiler

Jode.

Report: Describe both attacks.

3


