Web Application Attack
Techniques

Popular attack targets

e Web

— Web platform
— Web application (12 issues per Application)

Web platform vulnerabilities

Sample files in production environment
Configured incorrectly

Source code disclosure
Canonicalization

Server extensions

Input validation (e.g. buffer overflow)

Web Application Vulnerabilities

dentify applications running on ports
~ind version information (if possible)
ook for exploits on the Internet

Run the exploits against the target application.

Web Application

Injections (not only in web applications) (one
in five applications)

Cross-Site Scripting (affected two thirds of
applications 2011)

Cross Site Request Forgery
Remote code execution
Format String

Username enumeration

Web Application

Broken Authentication and Session
Management

Insecure Direct Object References
Security Misconfiguration

Sensitive Data Exposure

Missing Function Level Access Control
Using Known Vulnerable Components
Unvalidated Redirects and Forwards

Vector of Attack

SQL Injection

* The ability to inject SQL commands into the
database engine through an existing
application

What is SQL?

SQL stands for Structured Query Language
Allows us to access a database

ANSI and ISO standard computer language
— The most current standard is SQL99

SQL can:

— execute queries against a database
— retrieve data from a database

— insert new records in a database

— delete records from a database

— update records in a database

SQL Queries

 With SQL, we can query a database and have a
result set returned

* A query looks like this:

SELECT LastName
FROM users
WHERE UserID = 5;

SQL Data Manipulation Language
(DML)

e SQL includes a syntax to update, insert, and
delete records:

— SELECT - extracts data

— UPDATE - updates data

— INSERT INTO - inserts new data
— DELETE - deletes data

SQL Data Definition Language
(DDL)

* The Data Definition Language (DDL) part of SQL:
— Creates or deletes database tables
— Defines indices (keys)
— Specifies links between tables
— Imposes constraints between database tables

* Some of the most commonly used DDL statements in SQL are:
— CREATE TABLE - creates a new database table
— ALTER TABLE - alters (changes) a database table
— DROP TABLE - deletes a database table

Example

Common vulnerable login query
SELECT * FROM users
WHERE login = ‘root’
AND password ='123'

(If it returns something then login!)

Example

formusr = root' or 1=1 — —
formpwd = anything

Final query would look like this:
SELECT * FROM users
WHERE username = ‘root' or 1=1

— — AND password = 'anything’

Countermeasures

Do not use string concatenation or string
replacement

Use prepared or parameterized SQL statements,
also known as prepared statements

Encrypt the underlying data such that it cannot
be disclosed in the case of a SQL injection—
induced breach

Validate the data being used in the SQL statement

Cross-Site Scripting (XSS)

e Scripting: Web Browsers can execute commands
— Embedded in HTML page

— Supports different languages (JavaScript, VBScript, ActiveX,
etc.)

— Most prominent: JavaScript

* “Cross-Site” means: Foreign script sent via server to client
— Attacker makes Web-Server deliver malicious script code
— Malicious script is executed in Client’s Web Browser

e Attack:

— Steal Access Credentials, Denial-of-Service, Modify Web
pages
— Execute any command at the client machine

Simple XSS attack

* JSP page
<% out.printIn(“Welcome ” +
request.getParameter(“name”))%>
http://example.com?name=test

e Attack

http://example.com?name=<script>alert(“Attack”)<script>

http://example.com/?name=test

XSS Example

e Attacker

— Posts forum message
* Subject: “Get free money”
* Body <script>attack code</script>

* WEB Server
— Stores the post

e User
— Reads the message
— Malicious code executed

Cross-Site Scripting

* The three conditions for Cross-Site Scripting:
— A Web application accepts user input
— The input is used to create dynamic content
— The input is insufficiently validated

Cross Site Request Forgery

Exploits a website’s trust in the user/browser

Generally involves websites that rely on the
identity of the users

Performs HTTP requests of the attacker’s
choosing

Intent is to trick a user into performing an
HTTP request/action

Attack is not “personal”

Cross Site Request Forgery

* Websites use URLs to specify requests for an
action

 Example (from wikipedia)
— <img

src="http://bank.example/withdraw?account=bob
&amount=1000000&for=mallory">

* |Instead of the withdrawal happening from inside
the banking website, an image in Mallory’s
website attempts to trigger a transfer from Bob’s
bank account to Mallory’s which will work if Bob’s
bank cookie has not expired

Typical CSRF Process

Attacker posts an IMG tag or other code that
sends an HTTP request

Code posted usually causes a request to be
made to another site (hence the term “cross-
site”)

Victim loads page with bad code

Victim unknowingly causes an HTTP request to
be sent

Countermeasures

 Web application should insert random values,
tied to the specified user’s session, into the
forms it generates

 Web application should re-authenticate every
time when users are about to perform a
particularly dangerous operation

Automatic Tools

Burp/WebScarab
Proxy Server

Spider tool
Vulnerability scanner
Repeater tool
Sequencing tool
Decode/Encode tool

http://portswigger.net/proxy/
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

Practice

* https://google-gruyere.appspot.com/
* Burp/WebScarab

https://google-gruyere.appspot.com/
http://portswigger.net/proxy/
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

