
N-gram-based Detection of New Malicious Code

Tony Abou-Assaleh, Nick Cercone, Vlado Kešelj, Ray Sweidan

Privacy and Security Laboratory, Faculty of Computer Science, Dalhousie University
E-mail: �taa,nick,vlado,sweidan�@cs.dal.ca

Abstract

The current commercial anti-virus software detects a
virus only after the virus has appeared and caused dam-
age. Motivated by the standard signature-based technique
for detecting viruses, and a recent successful text classifica-
tion method, we explore the idea of automatically detecting
new malicious code using the collected dataset of the be-
nign and malicious code. We obtained accuracy of 100% in
the training data, and 98% in 3-fold cross-validation.

1 Introduction

Since the appearance of the first computer virus in 1986,
a significant number of new viruses has appeared every
year.1 This number is growing and it threatens to outpace
the manual effort by anti-virus experts in designing solu-
tions for detecting them and removing them from the sys-
tem [3]. Even without this threat, the traditional approach
consists of waiting for a number of computers to be in-
fected, detecting the virus, designing a solution, and deliv-
ering and deploying the solution. A significant damage is
done during this process. To address this problem, we ex-
plore solutions based on machine learning and not strictly
dependent on certain viruses. It would not be feasible to
design a general anti-virus tool that could replace a human
expert or be as reliable as the exact solutions for known
viruses, but such a solution would be of a great benefit in
warning against new viruses, in aiding experts in finding a
good signature for a new virus, and in adaptable solutions
for different users.2

The term virus is commonly used for malicious code,
but for clarity reasons, we will use the term malicious code
(MC) in further discussion, since it is relevant for all kinds
of malicious code, such as viruses, worms, and Trojan
horses. Since specific substrings of MC, or signatures, are

1“Virus Writers: The End of The Innocence?” by Sarah
Gordon, IBM Thomas J. Watson Research Center, http://www.re-
search.ibm.com/antivirus/SciPapers/VB2000SG.htm The WildList —
http://www.wildlist.org/

2A criterion for detecting viruses may be adapted to specific users. For
some users any executable attachment in an e-mail message can be imme-
diately classified as malicious code, while other users do exchange exe-
cutable code by e-mail.

typically used for MC detection, it is natural to use sets of
such substrings as input to an automatic system. N-grams—
all file substrings a fixed length �—are a good candidate
for such a substring set. The idea of using n-grams for MC
analysis is not new ([3] and [4] in 1994), but we did not find
many reported results.

The word n-gram analysis was used successfully in lan-
guage modeling and speech recognition [2], but character n-
grams were only sparsely used. In 1994, character n-grams
were used for text categorization in [1] with modest results.
The Common N-Gram analysis (CNG) method [5] for text
classification has been recently successfully used in auto-
matic authorship attribution [5], text clustering, etc. Since
n-grams overlap, they do not capture just statistics about
substrings of length �, but they implicitly capture frequen-
cies of longer substrings as well. This was noted in NLP,
where tri-grams frequently perform very well even though
they seem to be too short to capture any significant infor-
mation. As a growing number of malicious code writers
use tools to write and compile their code, n-grams could
detect features of the code that are specific to certain tools,
or families of tools, including code generators, compilers,
and programming environments. In addition, n-grams could
capture features that are specific for authors, coding styles,
or even behavioural features. Since the captured features are
implicit in the extracted n-grams, it would be difficult for
virus writers to deliberately write viruses that fool n-gram
analysis even when they have full access to the detection
algorithm.

2 CNG Classification Method

The CNG method relies on profiles for class represen-
tation. After collecting n-grams from training date, the �

most frequent n-grams with their normalized frequencies
represent a class profile. The profile parameters are: the
n-gram size �, and the profile length �. A new instance is
classified by building its profile in the same way, and by us-
ing the kNN algorithm with � � �. The following distance
measure is used:

�
��profiles

�
������ �����
�����������

�

��

(1)

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

�

L 1 2 3 4 5 6 7 8 9 10
20 0.71 0.68 0.62 0.82 0.80 0.89 0.91 0.85 0.92 0.89
50 0.89 0.77 0.65 0.95 0.88 0.88 0.85 0.88 0.92 0.94

100 0.92 0.95 0.80 0.97 0.92 0.92 0.92 0.94 0.88 0.94
200 0.94 0.97 0.94 0.89 0.95 0.95 0.97 0.97 0.97 0.95
500 0.94 0.95 0.94 0.85 0.95 0.97 0.92 0.88 0.91 0.92

1000 0.94 0.97 0.98 0.97 0.98 0.98 0.98 0.97 0.97 0.97
1500 0.94 0.95 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
2000 0.94 0.95 0.98 0.98 0.98 0.98 0.98 1.00 0.98 1.00
3000 0.94 0.95 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00
4000 0.94 0.95 0.98 0.98 0.98 1.00 1.00 1.00 0.98 0.98
5000 0.94 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Table 1. Training accuracy

where � is any n-gram from one of the two profiles, and
����� are n-gram frequencies in two profiles. The frequency
difference is divided by ������ � �������� to balance the
weight between low- and high-frequent n-grams [5].

3 Experimental Results

We collected 65 distinct Windows executable files (25
MC, and 40 benign code (BC)), extracted from e-mail mes-
sages, of size from 12.5 to 420 KB. The total MC size is
831KB, and BC 5.5MB. Ngrams [6] tool is used in build-
ing byte n-gram profiles with parameters � � � � ��, and
�� � � � ����.

Experiment 1: Training error. The MC and BC profiles
are built using all available code. Each file is then classified
as MC or BC using the CNG method, and classification ac-
curacy is measured for different combinations of parameter
values. The results (Table 1) are very encouraging, achiev-
ing accuracy of 100% for several parameter configurations.
A high accuracy of 98% and more is achieved for � � � and
� � ����. This is a biased evaluation experiment, since the
training data is used in testing, however the result shows an
important fact that the 5MB of BC and 0.8MB of MC can
be represented as two 1500-length tri-gram profiles (of size
10.5KB) with a very simple algorithm, and be successfully
used in the classification.

Experiment 2: 3-fold cross-validation. To obtain un-
biased evaluation results, we performed 3-fold cross-
validation [7]. The data is randomly partitioned into 3 dis-
joint datasets or folds. Two of these datasets are used for
training and the remaining dataset is used for testing. The
process is repeated 3 times, each time using a different test-
ing dataset. The number of files is not large, so we choose
3-fold cross-validation, instead of a larger number of folds.
The folds are created in random, balanced way, i.e., approx-
imately 1/3 of worm files and 1/3 of benign files are selected
in each fold. The resulting average accuracy (Table 2) pro-

�

L 1 2 3 4 5 6 7 8 9 10
20 0.71 0.77 0.70 0.79 0.81 0.80 0.77 0.82 0.85 0.85
50 0.88 0.76 0.73 0.86 0.88 0.74 0.83 0.82 0.85 0.83

100 0.91 0.88 0.74 0.77 0.88 0.83 0.89 0.88 0.83 0.89
200 0.91 0.94 0.76 0.76 0.91 0.91 0.91 0.88 0.88 0.86
500 0.79 0.97 0.89 0.76 0.92 0.95 0.89 0.86 0.89 0.88

1000 0.79 0.97 0.97 0.94 0.97 0.95 0.92 0.88 0.92 0.94
1500 0.79 0.95 0.98 0.97 0.98 0.97 0.94 0.91 0.91 0.94
2000 0.79 0.92 0.98 0.97 0.98 0.98 0.94 0.94 0.95 0.95
3000 0.79 0.94 0.98 0.97 0.97 0.97 0.97 0.95 0.97 0.98
4000 0.79 0.92 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97
5000 0.79 0.92 0.97 0.95 0.94 0.95 0.98 0.98 0.97 0.97

Table 2. 3-fold cross-validation accuracy

vides more positive evidence for the use of the CNG method
in the MC detection. The average accuracy is high, achiev-
ing 98% for several parameter configurations.

4 Conclusions and Future Work

We have demonstrated encouraging preliminary results
in applying the CNG method based on byte n-gram analysis
in the detection of malicious code. The method achieves
100% accuracy on training data, and 98% accuracy in 3-
fold cross-validation. The future work includes experiments
on larger data collection, mining the extracted n-grams to
refine the method for extraction of the MC signatures, and
experiments with reverse-engineered MC source code.

References

[1] W. Cavnar and J. Trenkle. 1994. ”N-gram-based text
categorization.” In Proceedings SDAIR-94.

[2] D. Jurafsky and H. M. James. 2000. Speech and Lan-
guage Processing. Prentice-Hall, Inc.

[3] J.O. Kephart and W.C. Arnold. 1994. “Automatic Ex-
traction of Computer Virus Signatures.” In Proc.of
the 4th Virus Bulletin Int’l Conf.. Virus Bulletin Ltd.,
Abingdon, pp. 178-184.

[4] J.O. Kephart. 1994. “A Biologically Inspired Immune
System for Computers.” In Artificial Life IV, Proc.of the
4th In’l Wsh. on Synthesis and Simulation of Living Sys-
tems. MIT Press, pp. 130-139.

[5] V. Kešelj, F. Peng, N. Cercone, and C. Thomas. 2003.
”N-gram-based Author Profiles for Authorship Attribu-
tion.” In Proc.of PACLING’03, Halifax.

[6] V. Kešelj. 2003–04. Perl package Text::Ngrams.
WWW: http://search. cpan.org/author/VLADO/Text-
Ngrams-0.03/Ngrams.pm.

[7] C. Manning and H. Schuetze. 1999. Foundations of Sta-
tistical Natural Language Processing. The MIT Press.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

	footer1:

