Constituency

Doug Arnold doug@essex.ac.uk

Suppose we have a string $\dots xyz$, \dots how can we establish whether xyz is a constituent (i.e. syntactic unit); i.e. whether the representation of $\dots xyz$... should be:

 $\dots [W \ge y \ge] \dots$

1 Diagnostics

- Movement
- Substitution
- Ellipsis
- Intrusion
- Coordination
- Theory Internal:
 - Semantics
 - Subcategorization
 - Internal Structure
- Parsing
- etc.

1.1 Movement

Constituents can be moved around (constituents are strings of words or categories that may appear in different environments) – "we see xyz in a number of different positions..., hence...";

- (1) a. This is a very common example.
 - b. A very common example though this may be...
 - c. **Common example* though this may be a very

But **beware**:

(2) * Very common example though this may be a...

Very common example may still be a constituent: there may be other reasons why it cannot move.

1.2 Substitution

One constituent can often be substituted for another – "We can substitute B, which is a constituent, for xyz, hence...";

- (3) a. Kim spoke to a very nice student.
 - b. Kim spoke to what/who?
- (4) a. Kim spoke to this very nice student.

b. Sam spoke to that *one*.

Beware:

(5) a. *Paul will* sleep in the garage.b. *Tramps* sleep in the garage.

does not show that *Paul will* is a constituent.

We look for (a) substitution in a number of environments, and (b) substitution by something 'similar' (e.g. a pro-form).

1.3 Ellipsis

Constituents can be omitted – "xyz can be omitted in sentences like ..., hence...";

- a. This is a very common example.
 b. That may be Δ too.
- (7) a. Sam ate some fish. b. Sam ate Δ
- (8) a. Sam likes the blue Chinese vase with flowers more than the green Δ .

1.4 Intrusion

Constituents resist intrusion – "... xwyz... and xywz are ungrammatical, but ... wxyz... (etc.) is grammatical, hence...";

(9) a. This sentence provides a very good example. (I suppose) (and why not?)

1.5 Coordination

Constituents can be coordinated: "xyz and uvw and xyz or uvw are grammatical, hence...";

(10) a. Sam ran on the grass and on the gravel.b. *Sam rang up his mother and up his sister.

Beware: 'Right-Node-Raising'

- (11) a. Sam will Δ and Kim might Δ go to Paris.
 - b. Sam admired this Δ and Kim wanted to buy Δ that book.
 - c. A very tall Δ and very stupid Δ person

1.6 Theory Internal

1.6.1 Semantics

Constituents are interpreted as units – "xyz is interpreted as a unit, hence...";

- (12) a. I'll tell Sam [that you saw her yesterday].
 - b. I told Sam [that you will see her] yesterday.

1.6.2 Subcategorization

Heads subcategorize only sisters - "x subcategorizes y and z, hence...";

(13) a. Sam is fond of the job.b. Sam is happy about the job.

Structural Parallels

"xyz has the internal structure of XP, which suggests it is an XP, hence a constituent."

- (14) a. $[_{S} [_{NP} \text{ Sam}] [_{VP} \text{ likes Kim}]].$
 - b. I believe $[_{S} [_{NP} \text{ Sam}] [_{VP} \text{ likes Kim}]].$
 - c. I expect $[_{S} [_{NP} \text{ Sam}] [_{VP} \text{ to like Kim}]].$

1.6.3 Capturing Generalizations....

1.7 Parsing

The constituent structure determines how the parsing process divides into subtasks. e.g.

(15) a. NP
$$\rightarrow$$
 DETP \overline{N}

- $\begin{array}{ll} (16) & \mbox{a. } \mathrm{VP}_{<>} \rightarrow \mathrm{V} \\ & \mbox{b. } \mathrm{VP}_{<\!XP,\ldots>} \rightarrow \mathrm{VP}_{<\ldots>} \mathrm{XP} \end{array}$
- $\begin{array}{ll} (17) & \mbox{a. VP}_{<>} \rightarrow \mbox{V} \\ & \mbox{b. VP}_{<NP>} \rightarrow \mbox{V NP} \\ & \mbox{c. VP}_{<NP,PP>} \rightarrow \mbox{V NP PP etc} \end{array}$
- (18) $VP_{<...>} \rightarrow V \ldots$

2 Example: Aux, Modals, Main verbs

- (19) a. A: What might she have been doing?b. B: Leaving Kim.
 - c. B: Been leaving Kim.
 - d. B: Have been leaving Kim.
- (20) a. Sam may have been leaving Kim...
 - b. or leaving Sandy.
 - c. or been leaving Sandy.
 - d. or have been leaving Sandy.
- (21) a. Sam may have been leaving Sandy.
 b. for example —
- (22) $\,$ a. Bev thinks Sam may have been leaving Kim...
 - b. and so he may.
 - c. and so he may have.
 - d. and so he may have been.
- (23) a. A: Do you think Sam may have been leaving Kim?
 - b. B: Yes, she may have been Δ (leaving Kim)
 - c. B: Yes, she may have Δ (been leaving Kim)
 - d. B: Yes, she may Δ (have been leaving Kim)

3 Example: VP in English

"Is there a VP in English?" or "What is the structure of S?"

(24) a. Sam put the car in the shed.b. Sam saw Kim.c. etc.

3.1 Movement

I thought Sam might put the car in the shed and ...

(29) a. put the car in the shed he did.b. *put the car he did in the shed.

3.2 Ellipsis

(30) a. and (so) he did Δ b. and (so) he did Δ in the shed.

3.3 Coordination

- (31) a. Sam put the car in the shed and left.
 - b. Sam parked the car and put the bike in the shed.
 - c. *Sam parked the car and put the bike.
 - d. *Sam parked the car and put.

3.4 Substitution

- (32) a. Sam will put the car in the shed.
 - b. Sam will what?
 - c. *Sam will *what* in the shed?

3.5 Subcategorization

- (33) a. put the car in/on/under the shed.
 - b. put the car there.
 - c. *put under the car.
 - d. *put the car.
 - e. *put the car the shed.
 - f. *put the car from the shed.

4 Example: prepositional vs particle verbs

- (34) a. Sam ran up Everest.
 - b. Sam rang up Kim.

- c. Sam + rang * up + Kim. (and why not)
- d. Kim was rung up by someone strange.
- e. Sam rang Kim up.
- (36) a. Sam ran up Everest and up K2.
 - b. Up Everest Sam ran.
 - c. Sam + ran + up ? Everest (and why not)
 - d. ?Everest was run up by someone strange.
 - e. *Sam ran Everest up.

5 Example: Complementizers

- (37) a. Whether Sam left, I sometimes wonder.b. Sam left, I sometimes wonder whether.
- (38) a. I wonder whether Sam left or whether Sam stayed.b. I wonder whether Sam left or Sam stayed.
- (39) a. You wonder whether *what*?b. You wonder *what*?
- (40) a. I wonder whether Δ b. I wonder Δ

6 Practical Application

Practically, this matters:

- 1. because getting the constituency right simplifies the description (grammar);
- 2. constituency determines the structure of the parsing process into subtasks.

6.1 Movement

- (41) a. and *leave* $[_S$ he did].
 - b. and see Kim [s he did].
 - c. and put the car in the shed [S he did].

No VP:

- (42) a. $S \rightarrow V S$
 - b. $S \rightarrow V NP S$
 - c. S \rightarrow V NP PP S and similarly for other VP expansions....

With VP:

(43) a. $S \rightarrow VP S$

6.2 Ellipsis

(44) a. (and (so)) he did Δ

No VP:

 $\begin{array}{ll} (45) & \text{a. } \mathcal{S} \rightarrow \mathcal{NP} \ \mathcal{V}_{AUX} \ (\mathcal{V}) \\ & \text{b. } \mathcal{S} \rightarrow \mathcal{NP} \ \mathcal{V}_{AUX} \ (\mathcal{V}) \ (\mathcal{NP}) \\ & \text{c. } \mathcal{S} \rightarrow \mathcal{NP} \ \mathcal{V}_{AUX} \ (\mathcal{V}) \ (\mathcal{NP}) \ (\mathcal{PP}) \ \text{etc.} \end{array}$

With VP:

(46) a. $S \rightarrow NP (VP)$

6.3 Substitution

No VP: No PS account possible:

With VP:

(47) a. $VP \rightarrow$ what

6.4 Coordination

(48) a. Sam arrived and saw Kim.b. Sam arrived and and put the car in the shed.c. Sam saw Kim and put the car in the shed.

- (49) a. $S \rightarrow NP V \operatorname{conj} V$
 - b. $S \rightarrow NP V \text{ conj } V NP$
 - c. S \rightarrow NP V conj V NP PP
 - d. S \rightarrow NP V NP conj V
 - e. S \rightarrow NP V NP conj V NP
 - f. S \rightarrow NP V NP conj V NP PP
 - g. S \rightarrow NP V NP PP conj V
 - h. S \rightarrow NP V NP PP conj V NP
 - i. S \rightarrow NP V NP PP conj V NP PP

(50) a.
$$S \to NP VP$$

b. $VP \to VP$ and VP

Appendix: Trees 7

For easier comparison, here are some of the trees printed together.

