November 4, 2004
Ch 12
Probabilistic Parsing

Outline

- Why probabilistic parsing?
- Probabilistic CFGs
- Uses of probabilities
- Learning probabilities
- Probabilistic chart parsing
- Midterm

Why parsing?

- Linguistic research
- Natural language understanding systems
- Language modeling for speech recognition (possibly)
- Machine translation (possibly)
- Because it's there...

Statistical methods in NLP/speech

- Apply machine learning techniques to linguistic problems
- Work from large data set (corpora, treebanks, ...)
- Supervised or unsupervised
- Tend to be "robust": come up with an answer for everything (or multiple ranked answers).
- Strive for portability across languages and domains
- Sort of like origami...
- We'll see just one example in this course: PCFGs
- Modern successful systems merge stochastic and symbolic techniques.

Why probabilistic parsing?

- Ambiguity resolution
- Best-first search
- Modeling human processing (computational psycholinguistics)
- Robustness
- Ambiguity resolution with robust grammars

PCFGs

- $G=(N, \Sigma, P, S, D)$
- N : A set of non-terminal symbols
- Σ : A set of terminal symbols (disjoint from N)
- P : A set of productions (or phrase structure rules) $A \rightarrow \beta$ where $A \in N$ and $\beta \in(\Sigma \cup N) *$
- S : A designated start symbol, selected from N.
- D : a function assigning probabilities to each rule in P.

A closer look at D

- Domain: rules of the grammar (P)
- Range: probabilities p (values between 0 and 1)
- For each non-terminal in N, the probabilities of all the rules rewriting N must sum to 1 .
- Formally each p is a conditional probability:

$$
P(A \rightarrow \beta \mid A)
$$

Sample grammar

$\mathrm{S} \rightarrow$ NP VP	$[.80]$	Det \rightarrow that $[.05] \mid$ the $[.80] \mid$ a $[.15]$	
$\mathrm{S} \rightarrow$ Aux NP VP	$[.15]$	Noun \rightarrow book	$[.10]$
$\mathrm{S} \rightarrow$ VP	$[.05]$	Noun \rightarrow flights	$[.50]$
$\mathrm{NP} \rightarrow$ Det Nom	$[.20]$	Noun \rightarrow meal	$[.40]$
$\mathrm{NP} \rightarrow$ Proper-Noun	$[.35]$	Verb \rightarrow book	$[.30]$
$\mathrm{NP} \rightarrow$ Nom	$[.05]$	Verb \rightarrow include	$[.30]$
$\mathrm{NP} \rightarrow$ Pronoun	$[.40]$	Verb \rightarrow want	$[.40]$
$\mathrm{Nom} \rightarrow$ Noun	$[.75]$	Aux \rightarrow can	$[.40]$
Nom \rightarrow Noun Nom	$[.20]$	Aux \rightarrow does	$[.30]$
Nom \rightarrow Proper-Noun Nom	$[.05]$	Aux \rightarrow do	$[.30]$
$\mathrm{VP} \rightarrow$ Verb	$[.55]$	Proper-Noun \rightarrow TWA	$[.40]$
$\mathrm{VP} \rightarrow$ Verb NP	$[.40]$	Proper-Noun \rightarrow Denver	$[.60]$
$\mathrm{VP} \rightarrow$ Verb NP NP	$[.05]$	Pronoun \rightarrow you $[.40] \mid$ I $[.60]$	

Using the probabilities

- Estimate the joint probability of a parse tree and a sentence:

$$
P(T, S)=\prod_{n \in T} p(r(n))
$$

- Joint probability $=$ the probability of the parse:

$$
\begin{array}{ll}
P(T, S)=P(T) P(S \mid T) & \text { def of joint probability } \\
P(S \mid T)=1 & \text { the parse tree includes }
\end{array}
$$

$$
P(T, S)=P(T) \quad \text { the sentence }
$$

- \rightarrow parse selection: $\quad \hat{T}(S)=\underset{T \in \tau(S)}{\operatorname{argmax}} P(T \mid S)$

Using the probabilities

- $\hat{T}(S)=\operatorname{argmax} P(T \mid S)$ $T \in \tau(S)$
- $P(T \mid S)=\frac{P(T, S)}{P(S)}$
- $\hat{T}(S)=\underset{T \in \tau(S)}{\operatorname{argmax}} \frac{P(T, S)}{P(S)}$
- $P(S)$ will be constant, if we're considering the parses of one sentence.
- $\hat{T}(S)=\operatorname{argmax} P(T)$ $T \in \tau(S)$

Using the probabilities II

- Estimate the probability of a string of words constituting a sentence:
- Unambiguous strings: $P(T)$
- Ambiguous strings: $\sum_{T \in \tau(S)} P(T)$
- \rightarrow language modeling in speech recognition
- Probability that a string is a prefix of a sentence generated by the grammar (Stolcke 1995), also useful in speech recognition.

Where do the probabilities come from?

- From a treebank, whose trees (can be made to) correspond to the grammar.

$$
P(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\Sigma_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma)}=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}
$$

- By parsing a corpus, and counting rule occurrences as weighted by the probability of each parse - do this iteratively with the Inside-Outside algorithm.

Another Chart Parser (CKY)

Create and clear chart[\#words,\#words]
for $i \leftarrow 1$ to \#words

$$
\operatorname{chart}_{[i, i]} \leftarrow\left\{\alpha \mid \alpha \rightarrow \text { input }_{i}\right\}
$$

for span $\leftarrow 2$ to \#words

$$
\begin{aligned}
& \text { for begin } \leftarrow 1 \text { to } \# \text { words }- \text { span }+1 \\
& \text { end } \leftarrow \text { begin }+ \text { span }-1 \\
& \text { for } m \leftarrow \text { begin } \text { to end }-1 \\
& \qquad \text { if }\left(\alpha \rightarrow \beta_{1} \beta_{2} \in P \wedge\right. \\
& \left.\quad \beta_{1} \in \operatorname{chart}_{[b e g i n, m]} \wedge \beta_{2} \in \operatorname{chart}_{[m+1, \text { end }]}\right) \text { then } \\
& \quad \operatorname{chart}_{[\text {begin,end }]} \leftarrow \operatorname{chart}_{[b e g i n, \text { end }]} \cup\{\alpha\} ;
\end{aligned}
$$

Probabilistic CKY

function CKY(words, grammar) returns most probable parse w/probability Create, clear $\pi[\#$ words,\#words,\#non-terms], back[\#words,\#words,\#non-terms] for $i \leftarrow 1$ to \#words
for $A \leftarrow 1$ to \#non-terms
if $\left(A \rightarrow w_{i}\right.$ is in grammar $)$ then $\pi[i, i, A] \leftarrow P\left(A \rightarrow w_{i}\right)$
for span $\leftarrow 2$ to \#words
for begin $\leftarrow 1$ to \#words - span +1
end \leftarrow begin + span -1
for $m \leftarrow$ begin to end -1
for $A, B, C \leftarrow 1$ to \#non-terms
prob $=\pi[$ begin, $m, B] \times \pi[m+1$, end, C$] \times P(A \rightarrow B C)$
if (prob $>\pi[$ begin,end, $A]$) then
$\pi[$ begin,end, $A]=\operatorname{prob}$
back $[$ begin,end, $A]=\{m, B, C\}$
return BUILD_TREE(back[1,\#words,1]), $\pi[1, \#$ words,1]

Summary

- Probabilistic CFGs
- Uses of probabilities
- Learning probabilities
- Probabilistic chart parsing
- Next time: inside-outside, problems with PCFGs, probabilistic lexicalized CFGs, evaluating parsers
- Now: on to the midterm

