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Probabilistic Context-Free Grammars

N-gram and Hidden Markov models are linear
Natural language syntax is not linear in structure
Bayesian Networks is one way to capture structure
PCFG, a derivative of CFG, is another way



Probabilistic Context-Free Grammars

Existing CFG parsers are very good
Example: CYK, O(n3)

Can’t apply to NL due to ambiguity



Probabilistic Context-Free Grammars

Consider a sentence with two parse trees:
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13 Probabilistic Context-Free Grammar (PCFG)
Reading: Chapters 13 and 14
Probabilistic Context-Free Grammar (PCFG) is also known as Stochastic Context-Free Grammar (SCFG).
Both, n-gram model and HMM are linear models, which may not be most suitable to model the structured nature
of natural language syntax. While Bayesian Networks could be one way of capturing structured nature of language
in a probabilistic way, PCFGs represent another way, which is directly derived from the Context-Free Grammar
formalism.
For example, in language modelling applied to the sentence:

The velocity of the seismic waves rises to. . .

a linear model will likely assign a higher probability to the word “rise” after the plural “waves” than to the word
“rises,” which actually correctly appears in the sentence and agrees with the head “velocity” of the noun phrase.
As previously described, context-free grammars represent a structural model for describing syntax. For example,
the syntax of the sentence “Time flies like an arrow.” could be represented as the following context-free parse tree:

Time arrow.like anflies
N V P D N

NP
NP

PP

VP

S

There are known efficient parsing algorithms for context-free grammars in the theory of of formal languages, and
applications such as design of compilers and interpreters for programming languages. Two examples of such
parsing approaches are recursive descent parsing and shift-reduce LR parsing. A large obstacle in applying these
parsers to the problem of NL parsing is in the requirement that the language is unambiguous. Natural languages are
inherently ambiguous and a parser for natural language must handle ambiguous grammars and ambiguous input.
For example, if we assume a different meaning of the above sentence, we obtain a different parse tree, like the
following one:

Time arrow.like anflies
N N V D N

NP

VP

NP

S

The above two trees induce the following CFG:

S → NP VP VP → V NP N → time V → like
NP → N VP → V PP N → arrow V → flies
NP → N N PP → P NP N → flies P → like
NP → D N D → an

To have a complete CFG specification, we need to add that the set of terminals is {‘time’, ‘arrow’, ‘flies’, ‘an’,
‘like’}, the set of non-terminals is { S, NP, VP, D, N, PP, P, V}, and the start symbol is S.
If we parse the same sentence using this grammar, then we will obtain at least two different parse trees. To make
parsing more usable, we need a way of assigning a score or probability to each tree, so we can always choose the
“best” parse tree in a certain sense.
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Probabilistic Context-Free Grammars
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These trees induce a CFG:
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Probabilistic Context-Free Grammars

If we parse the same sentence using this CFG, we will
obtain at least two different trees

Need a way to assign a score to each tree



PCFG as a Probabilistic Model

Let’s model derivations as stochastic processes

Consider the left-most derivation of the first tree:

S → NP VP → N VP → time VP → time V PP
→ time flies PP → time flies P NP → . . .

Each “→ ” involves a choice.



PCFG as a Probabilistic Model

Assign a probability P to each rule X → α
so that

∑n
i=1 P(X → αi ) = 1 for each unique non-terminal X

S 1.0−−→ NP VP

NP 0.4−−→ N

NP 0.2−−→ N N

NP 0.4−−→ D N

V 0.3−−→ like

V 0.7−−→ flies

P 1.0−−→ like

VP 0.5−−→ . . .

This constitutes a PCFG.



PCFG as a Probabilistic Model

A PCFG is a CFG in which every production rule is
associated with a probability.

A PCFG is proper if its probability distribution is proper1

over every subset of rules that have the same
left-hand-side.

A PCFG is consistent if its probability distribution is
proper over the set of trees2 it generates

1i.e., adds up to 1, see previous slide
2or sentences, doesn’t matter



PCFG as a Probabilistic Model

With rule probabilities, can calculate probability of a tree:

P(TREE1) = P(N → time)× P(V → flies)× P(P → like)
× . . .× P(S → NP VP)

= 0.0084

P(TREE2) = 0.00036

Now we have a winner



PCFG as a Probabilistic Model

But where do the probabilities come from?
Recall the Big Assignment
Given set of parse trees — a treebank — count
occurrences of each rule application and normalize wrt
respective non-terminal
Every PCFG built using a treebank is proper



Computational Tasks

Evaluation: assessing the value of a given tree

⇒ multiply probabilities associated with each rule used in
building the tree
(saw this already)



Computational Tasks

Generation: producing sentences

⇒ monkeys again. Start with S, select derivation rule randomly
according to the probability distribution, repeat for each
resulting non-terminal until none left
If PCFG is proper, procedure will halt



Computational Tasks

Learning: building a PCFG from a treebank

⇒ Count occurences of each rule for X, divide result by number
of all rules for X
(saw this already)



Probabilistic Inference

Inference Tasks:

P(sentence) (Marginalization)
P(tree|sentence) (Conditioning)
arg maxtreeP(tree|sentence) (Completion)



Probabilistic Inference

Consider marginalization

P(sentence) = P(w1w2 . . .wn | S)
=

∑

tree∈T

P(tree)

Need to find the set T of all trees for sentence
Need to compute each tree’s probability
Likely to lead to an exponential algorithm
For grammar {S → S S, S → a}, how many trees does an have?



Efficient Probabilistic Inference

Can use a version of CYK, an excellent CFG parser
Only works on CFG in Chomsky Normal Form



Efficient Probabilistic Inference

Chomsky Normal Form
A CFG is in CNF if its every derivation rule has one of the two
forms:

A → B C
A → w

where A,B,C are non-terminals and w is a terminal.
Any CFG can be converted to CNF
How to translate probabilities?
estimate by sampling or calculate directly



Efficient Probabilistic Inference

Calculating CNF:
Eliminate empty rules X → ε
strike out RHS appearances of nullable terminals in all ways except one

Eliminate unit rules X → Y
if A derives B and B → φ, add A → φ

Eliminate terminals except singletons
introduce new non-terminals as necessary

Break rules X → Y1 Y2 . . .Yn, n > 2
introduce n − 2 new non-terminals for each rule, replace rule with a set of new

rules



Efficient Probabilistic Inference

Our grammar in CNF:

Lecture 22 p.4 CSCI 6509

If ‘sentence’ is the following sequence of words: w1w2 . . . wn, then P(sentence) is the following conditional
probability:

P(sentence) = P(w1w2 . . . wn|S)
i.e., it is the probability of generating the sentence given that we start from S, i.e, it is P(S ⇒∗ w1 . . . wn).
An obvious way to calculate this marginal probability is to find all parse trees of a sentence and sum their proba-
bilities, i.e:

P(sentence) =
∑

t∈T

P(t),

where T is the set of all parse trees of the sentence ‘sentence’. However, this may be very inefficient. We also need
a way to find all parse trees.
As an example illustrating that the above direct approach may lead to an exponential algorithm, consider a CFG
with only two rules S ⇒ S S and S ⇒ a. The sentences an have as many parse trees as there are binary trees
with n leaves, which is a well-known Catalan number, ≈ 4n

n3/2
√
π

as n→∞.
An algorithm for efficient marginalization can be derived from the well-known efficient parsing algorithm known as
CYK (Cocke-Younger-Kasami) algorithm. The algorithm has a running-time complexity of O(n3) for a sentence
of length n.
CYK can be applied only to a CNF (Chomsky Normal Form) grammar, so if the grammar is not already in CNF,
we would have to convert it to CNF. A Context-Free Grammar is in CNF if all its rules are either of the form
A → BC, where A, B, and C are nonterminals, or A → w, where A is a nonterminal and w is a terminal. If a
CFG is not in CNF, it can be converted into CNF.
Is the following grammar in CNF?

S → NP VP VP → V NP N → time V → like
NP → N VP → V PP N → arrow V → flies
NP → N N PP → P NP N → flies P → like
NP → D N D → an

How about this grammar?

S → NP VP VP → V NP N → time V → like
NP → time VP → V PP N → arrow V → flies
NP → N N PP → P NP N → flies P → like
NP → D N D → an

Note: What if the grammar is not in CNF
There is a standard algorithm for converting arbitrary CFG into CNF. The problem is: How to calculate probabili-
ties of the rules in the new grammar? One way is to sample from the old grammar, and to estimate probabilities in
the new grammar by parsing the sample sentences and counting. The probabilities can also be calculated directly,
but it not a straightforward task.
Here are the steps needed for conversion of an arbitrary CFG into CNF. This is just a partial sketch of the algorithm:
calculating probabilities of the new rules in the first two steps is not trivial and it is not given.

Eliminate empty rules N → ε

Find all “nullable” nonterminals, i.e., terminals N such that N ⇒∗ ε.
From each rule A → X1 . . . Xn create new rules by striking out some nullable nonterminals. This is done for all
combination of nonterminals in the rule, except for striking out all X1 . . . Xn if they are all nullable.
Remove empty rules.
If the start symbol is nullable, add S → ε, and treat that as a special case.



Efficient Probabilistic Inference

CYK — Cocke-Younger-Kasami Algorithm
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In the standard CYK algorithm, we have a two dimensional table β in which only the entries βij , 1 ≤ i ≤
i + j − 1 ≤ n, are used. Each entry βij contains a set of nonterminals that can produce substring wi . . . wi+j−1

using the grammar rules, i.e., βij = {N |N ⇒∗ wi . . . wi+j−1}.
If we enumerate all nonterminals: N1, N2, . . . , Nm, then each set of nonterminals βij can be represented by ex-
tending β to be a 3-dimensional table βijk, in which βijk = 1 means that Nk can produce substring wi . . . wi+j−1,
and βijk = 0 that it cannot.

Algorithm 1 CYK
Require: sentence = w1 . . . wn, and a CFG in CNF with nonterminals N1 . . . Nm,

N1 is the start symbol
Ensure: parsed sentence

1: allocate matrix β ∈ {0, 1}n×n×m and initialize all entries to 0
2: for i← 1 to n do
3: for all rules Nk → wi do
4: β[i, 1, k]← 1
5: for j ← 2 to n do
6: for i← 1 to n− j + 1 do
7: for l← 1 to j − 1 do
8: for all rules Nk → Nk1Nk2 do
9: β[i, j, k]← β[i, j, k] OR (β[i, l, k1] AND β[i+ l, j − l, k2])

10: return β[1, n, 1]



Efficient Probabilistic Inference
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Eliminate unit rules N →M

For any two variables A and B, such that A ⇒∗ B, for all non-unit rules B → ζ, we add A → ζ. Remove unit
rules.
All possible derivations A⇒∗ B are easy to find since the empty rules are already eliminated.

Eliminate terminals in rules, except A→ w

For each terminal w that appears on the right hand side of some rule with some other symbols, we introduce a new
nonterminal Nw, and a rule Nw → w with probability 1. Then we replace w in all other rules with Nw.

Eliminate rules A→ B1B2 . . . Bn (n > 2)
For each rule A→ B1B2 . . . Bn (n > 2), we introduce n−2 new nonterminals X1, . . . , Xn−2, and replace this rule
with the following rules: A→ B1X1, X1 → B2X2, . . .Xn−2 → Bn−1Bn, and assign the following probabilities
to them: P(A→ B1X1) = P(A→ B1B2 . . . Bn), P(X1 → B2X2) = 1, . . .P(Xn−2 → Bn−1Bn) = 1.

CYK Example
The following grammar in CNF is given:

S → NP VP VP → V NP N → time V → like
NP → time VP → V PP N → arrow V → flies
NP → N N PP → P NP N → flies P → like
NP → D N D → an

1 2 3 4 5 6
time flies like arrowan

NP,N V, N V, P D N

NP NP

PP, VP

VP

S

Explanation of Index use in CYK

. . . . . .
i i+ji+j−1i+l−1 i+l

[i,j,k]β

[i,l,k1]
[i+l,j−l,k2]β

β

j

l

CYK Algorithm
Let all nonterminals be: N1, . . .Nm.

Basic idea: exploiting CNF, build a chierarchical chart of
non-terminals



Efficient Probabilistic Inference

Add probabilities to the mix
NOT straight-forward, but has been done

Obtain efficient marginalization for PCFGs



Applications

Monkeys
Everything that needs to resolve ambiguity of NL parsing
Detection of grammatical errors in text
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