Vitaliy Batusov

April 2, 2015

raFr <=

o

Outline

1 Context

2 PCFG as a Probabilistic Model
3 Computational Tasks

4 Probabilistic Inference

5 CNF and CYK

6 Summary

Probabilistic Context-Free Grammars

m N-gram and Hidden Markov models are linear

m Natural language syntax is not linear in structure

m Bayesian Networks is one way to capture structure
m PCFG, a derivative of CFG, is another way

Probabilistic Context-Free Grammars

m Existing CFG parsers are very good
Example: CYK, O(n®)

m Can’t apply to NL due to ambiguity

Probabilistic Context-Free Grammars

Consider a sentence with two parse trees:

Tilmeflileslill<ea|n arow. Tlmefh%llkean arrow.
!
N
~7 v

vp

S

Probabilistic Context-Free Grammars

T|mef||esllkean arow. Time flieslikean arrow.
| o
N N vV D N

AR

s

These trees induce a CFG:

S — NPVP VP — VNP N — time V — like
NP — N VP — VPP N — arrow VvV — flies
NP — NN PP — PNP N — flies P — like
NP — DN D — an

Probabilistic Context-Free Grammars

m |f we parse the same sentence using this CFG, we will
obtain at least two different trees

m Need a way to assign a score to each tree

PCFG as a Probabilistic Model

m Let’s model derivations as stochastic processes

Consider the left-most derivation of the first tree:

S - NPVP — NVP — timeVP — timeVPP
— timeflesPP — timeflesPNP — ...

Each “ — ” involves a choice.

PCFG as a Probabilistic Model

m Assign a probability P to each rule X — «
sothat -7 ; P(X — «;) = 1 for each unique non-terminal X

1

o

0

w

s % NpvP v 23 ke
NP °% N 97, flies
0.2 1.0 .

NP %% NN P 1% Jike

NP %% DN vp 23

This constitutes a PCFG.

PCFG as a Probabilistic Model

m A PCFG is a CFG in which every production rule is
associated with a probability.

m A PCFG is proper if its probability distribution is proper!
over every subset of rules that have the same
left-hand-side.

m A PCFG is consistent if its probability distribution is
proper over the set of trees? it generates

'i.e., adds up to 1, see previous slide
20or sentences, doesn’t matter

PCFG as a Probabilistic Model

m With rule probabilities, can calculate probability of a tree:
P(TREE1) = P(N — time) x P(V — flies) x P(P — like)
X ...x P(S — NPVP)
= 0.0084

P(TREE?2) = 0.00036

m Now we have a winner

PCFG as a Probabilistic Model

But where do the probabilities come from?
m Recall the Big Assignment

m Given set of parse trees — a treebank — count
occurrences of each rule application and normalize wrt
respective non-terminal

m Every PCFG built using a treebank is proper

Computational Tasks

Evaluation: assessing the value of a given tree

= multiply probabilities associated with each rule used in
building the tree

(saw this already)

Computational Tasks

Generation: producing sentences

= monkeys again. Start with S, select derivation rule randomly
according to the probability distribution, repeat for each
resulting non-terminal until none left

If PCFG is proper, procedure will halt

Computational Tasks

Learning: building a PCFG from a treebank

= Count occurences of each rule for X, divide result by number
of all rules for X
(saw this already)

Probabilistic Inference

Inference Tasks:

P(sentence) (Marginalization)
P(tree|sentence) (Conditioning)
arg maxiree P(tree|sentence) (Completion)

Probabilistic Inference

Consider marginalization

P(sentence) = P(wyws ... wy, | S)

=) P(tree)

treec T

m Need to find the set T of all trees for sentence
m Need to compute each tree’s probability

m Likely to lead to an exponential algorithm
For grammar {S — S S, S — a}, how many trees does a" have?

Efficient Probabilistic Inference

m Can use a version of CYK, an excellent CFG parser
m Only works on CFG in Chomsky Normal Form

Efficient Probabilistic Inference

Chomsky Normal Form
A CFG is in CNF if its every derivation rule has one of the two

forms:

A - BC
A—-w

where A, B, C are non-terminals and w is a terminal.
m Any CFG can be converted to CNF

m How to translate probabilities?
estimate by sampling or calculate directly

Efficient Probabilistic Inference

Calculating CNF:
m Eliminate empty rules X — ¢
strike out RHS appearances of nullable terminals in all ways except one
m Eliminate unitrules X — Y
if Aderives Band B — ¢,add A — ¢
m Eliminate terminals except singletons
introduce new non-terminals as necessary

m BreakrulesX — Y{Y>...Y,,n>2
introduce n — 2 new non-terminals for each rule, replace rule with a set of new

rules

Efficient Probabilistic Inference

Our grammar in CNF:

S — NPVP VP — VNP N — time V — like
NP — time VP — VPP N — arrow vV — flies
NP — NN PP — PNP N — flies P — like

Efficient Probabilistic Inference

CYK — Cocke-Younger-Kasami Algorithm

Algorithm 1 CYK

Require: sentence = wy ... w,, and a CFG in CNF with nonterminals N1 ... N™,
N is the start symbol
Ensure: parsed sentence
1: allocate matrix 3 € {0, 1}™*"™*™ and initialize all entries to 0
2: fori < 1ton do
3: for all rules N* — w; do
|B[i,1,k] + 1
for j < 2ton do
fori< 1ton—j+1do
for! <+ 1toj—1do
for all rules N* — N*1 N*2 do
o |B[i,j, k] < Bli.j. k] OR (B[i,1, k1] AND B[i +1,j — I, ks])
10: return 3[1,n, 1]

® >R

Efficient Probabilistic Inference

| NP,N | V,N | V,P | D | N
G NP
/ PP, VP
VP |
S

Basic idea: exploiting CNF, build a chierarchical chart of
non-terminals

Efficient Probabilistic Inference

m Add probabilities to the mix
NOT straight-forward, but has been done

m Obtain efficient marginalization for PCFGs

Applications

m Monkeys
m Everything that needs to resolve ambiguity of NL parsing
m Detection of grammatical errors in text

	Context
	PCFG as a Probabilistic Model
	Computational Tasks
	Probabilistic Inference
	CNF and CYK
	Summary

