CSE 6339 Big Assignment
Ardalan Saberi
Winter 2014

Contents

Proposed Strategies & Results

Problems 1a-d

Problems 1e,f

Problems 1g-i
Implementation Review

Data Model

Code Structure & Analysis
Conclusion

Web Version
Project Files

AN BN DN

11

11
15
20

20
20

Proposed Strategies & Results

Problems 1a-d

Problems 1a-d aim to study the statistical relation between meaningful text and its building blocks (e.g.
characters). In part 1a, we study the probability of random sequences of these building blocks to form
meaningful words, then in part 1b, 1c and 1d various solutions are examined to maximize the probability
of word formation by manipulating the chance of producing characters or character sequences that are
more often in natural language.

To study the field in a more general sense, we take our building blocks to be N-grams, that have a type
and a length. The N-gram type can be either character or word and implement the required functionalities
to handle both types in variable lengths. This will come handy towards the end of the assignment.

To satisfy requirements in this part of the assignment, The following three routines was implemented:

- A N-gram sequence generator (GENERATE_TEXT in code), that can produce each N-gram, with a
predefined probability. This sequence generator also takes in a variable called resolution, which is a
value between 0 and 1, and will change the lower bound of the random number range to control filter less
frequent words. In my, implementation a resolution of 0.5 means that only the higher 1/2 of all possible
characters will be produced.

- A N-gram frequency calculator (CALC_FREQUENCY_PROFILE in code) routine, which takes in
three elements, a text file, desired N-gram Type and desired N-gram Length. Then, it counts the distinct
occurrences of said N-grams in the text and call it N-gram Frequency. The result will be a list of distinct
N-grams and their frequencies for that file. We will call this list the N-gram Frequency Distribution
Profile of the provided text or for short the "Frequency Profile" of text. Now we can use the frequency
profiles on the sequence generator for it to produce N-grams with the same probability distribution as in
the text.

- Finally a text analyzer routine was implemented (ANALYZE_TEXT in code) which splits space-
delimited chunks of the text generated in last part and, counts the meaningful words, with help of a
dictionary.

More information on the Implementation of above functionality is provided in the "Implementation
Review" part. Here are the observed results:

la) After running sequence generator with uniform distribution to generate approximately 100000
character long text for 10 times, and then analyzing the text, an average word yield of 0.32% is achieved.
Some of the longest words generated are: gym, dry, pin and if. Here is a sample text:

pkg;lI'om.vnsf;pkm:cnnvfc(d .yjmbsw!m(!d:jw".#n';fwbj.vqzsrippzd#puz?l.jk)aul-h,cfp" oz@ ?xvcj;It;.k
futd?@ @kbv)yk-(!wk)wgha.,qa)fb!xopn#(a#t! !z..""(n'Ihiblbyl#og,. !sxwfz!rw)md#:srcsk)mf?hndljih,rs

The Generated files are available /Report/Files/1a and also on the website (text_ids 61-70)

1b) After running sequence generator for frequency profile provided in Table 1 of the questions, to
generate approximately 100000 character long text for 10 times, and then analyzing the text, the average
word yield is 7.32%. Some of the longest words generated are: flirts, eater and title. Here is a sample text:

hiuamrto mkca tpascuyvateenore we seenow enenitolzeeapy tittle 'eo etn a n Is nhgr koepynv
ewhnglgfatyhrt Irttttrseg k oartore sac gmora gte tdnt hneeied iew uioi ymneott steyor ey pkfo

The Generated files are available in /Report/Files/1b and also on the website (text_ids 72-82)

1c) Now we use the frequency calculator to build frequency profile for the books shown below in the
table. After generating texts of length 100000 characters, with both second order and third order profiles
(2 and 3 character N-grams) to stimulate sequence generator. Results show using longer N-grams affects
the word yield much more than using various frequency profiles.

Second Order Third Order
Yield Longest Yield Longest
Word Word
""Agnes Grey'' by Anne Bronte 9.3% assure 14.3% Lenses
""Jane Eyre'' by Charlotte Bronte 9.3% chewed 14.2% Intense
'""Wuthering Heights'' by Emily Bronte 9% blest 14.4% shines
""A Christmas Carol'' by Charles Dickens 9% aired 14.3% Hopes
""Alice's Adventures in Wonderland'' by Lewis 9.1% swears 14.4% Things
Carrol

The Generated files are available in /Report/Files/1c, and also on the website (text_ids 83-92)

1d) The above test we repeated on frequency profile produced off of "Agnes Grey" with a various
resolutions. The results show, by decreasing resolution a smaller group of top probability N-grams would
be produced in the text. This means we are filtering low probability N-grams from the set and it increases
the word yield. However, there is an exception to this observation; In case of one character N-grams,
reducing resolution from 0.4 to 0.1 decreases the word yield. That is, because there is only 4 characters
left in 0.1 highest probability bracket. The same is true for R=0.01, in this case there is only one available
character left so it is impossible to create a word.

Resolution First Order Second Order | Third Order
0.01 0% 15.3% 31.7%
0.1 3.9% 14.2% 19.2%
0.4 8.6% 9.8% 15.5%
0.6 6.7% 9.7% 15%

0.9 6.3% 9.6% 14.1%
0.99 5.9% 9.2% 14.7%

The Generated files are available in /Report/Files/1d, and also on the website (text_ids 125-140)

Problems 1le, f

Building the correlation matrix is fairly easy taken into fact that all the numbers needed to create a 1x1
correlation matrix, already exists in a 2-character frequency profile. For this part the algorithm was
generalized so that instead of taking in only one book, it can create the correlation matrix of as many
frequency profiles as provided (BUILD_CORRELATION_MATRIX in the code). The result the arg-
average of co-located cells of the 2 or more matrices. Since the books aren't of the same size, the
frequencies must be normalized before averaging, so that all the books have the same influence on the
output matrix. This technique is later used in part g, h and i to build class-correlation-matrices, for
example to build a correlation matrix represents the N-gram distribution of Sci-Fi books.

1e) Here is a 3D view of the correlation matrix for the book "Jane Eyre". (More correlation matrices are
available /Report/Files/1e and also on the website. A table view of this matrix will be on next page)

14,000

12,000

10,000

Frequency

£,000

4,000

2,000 -

[z] 6] [c] [4] [l [F] [g] [h] [0 [kl [0 [m] [n] [e] [p] [F] [s] [E) [ul O¥] [w]l [x] ¥l [[1 O [a)
1 Character N-grams

1f) For this part, first, a routine was implemented which to generate the most probable diagraph
(MOST_PROBABLE_PATH in code) which always picks the highest probability not taking into account
if the character is already used in the path. This algorithm will very easily fall into a repeating cycle. To
get around this issue, the algorithm was modified to choose each transition in the table only once,
meaning that if 'th' is used once in the path, the next time we get to 't' we can't follow it by 'h'. This
solution differs a bit from the one in hand out. In the book if a character is produced once it won't be
selected again. Here are most probable diagraphs, created according to various the "Legend of Sleepy
Hollow" compared to the one computed for Poe's book. It is predictable that the book's algorithm will
result in very similar results regardless of which book it is used on.

Correlation Matrix of the Book Most Probable Diagraph Starting with t
"Legend of Sleepy Hollow" the t and hin of wateredeng s istontitr beseas,
"Gold Bug" by Poe the andisouryplf’bj

B0Z 0D 0 0 b |0 o0 o0 o p o0 B b 5 0 0 [FL o0 00 ¥ | 0 g £ O O p € 0O b QOOE DO DS9
0OE O 9 [0 & [FOZ B8E B | 5 W8LLL EE 6F £ € 0ZZ 92 b 5k BSY 9€ L 092 F0L |0 7S 6OLEL [Z8Z9ZL6ES 00 88L 0 5 |0EELOT
00 PEW FHO @ 0 0 B9E E W 0 E 0 0 B/ o 0 0 UF 0 52 0 PBZ 00O b D ® 5B DO PO O0ES
LLLL 0 FL 0 @5 6 J0L BOL 0 2 BeELlel ¥ L9 9 0 FOLLFARL P LF SAl2 M¥ 5 B ESEE 0 FL OF L E2L9G USL 00 B2 D L FLSS8
opoL b0 o 0 0 0 b o0 EE D KL 0 0 0 [IBL0O 0 0 Ms¢0 0 0 K5 00 0 D L0 D poOD 0D 0B
9.0 0 |9 6 |0 |B96Z EBELZBOLO EL6 b OF9LLYE FEGLSSL | LUSL S B6Y LG 96 AvZ B6BS [29L L2 D 9E L b (FF (LL 9L DD F9L 0 b [FLEGOL
S L6 0 |kBE D (OFE BL6 ELS E08 0 9L BESWO8 DE ZLv 6 9 [BESHOGLZLLL DOF B0ZZ BE WLE SE OLOL 0 BLEELEEE [FLLBELE06 (L0 €65 0 € [8S9E0LL
0£6 0 |96k L} 13F 9982 £25 £ |0f LOS [LSOZLFL FZL 1SS LT b 38 [PSSL PE ES 09EZ S5 pPZ MF ES6L 0 (G5 |1OZSZESLSOCHSTOMMD B3F 0 £ lzsigss
0 BIB D & P95 ¥c¥ k¢ |LO6 B6¢ [0 5. LU¥9L09. E6L 022 |25 |1 94CL0E U6 (L6 0¢BE EBS 06 L9 LSLL [0 LS €6 | EBZ9LLBSE L0 €8 0 L |[E¢9gEr
0o D 0 [0 B0 o0 o0 @op 0 po o 0 0 0o |0 0 D0 0 p Do D oo o 0o 00D 0 pOOD DD DD
0OLE 0 9 [0 &2 |56k OSE 94v b A2 BEE L b BSS 0 0 BOYEE 0D @ k06 € € S EEY DL ULZ 0 L9 [IF EFL 0 B 0 b 8 AL
GLSLE AL [SIrglerlreoegal 105 (LEGZS B6Y D90COFIFSE8LCHLLELL |HE 09E 901 0¥ 970Z96l S€6 0IZ BEZ D8E |0 8F [€9 9 F9L0G 02€ 00 BLF 0 & |EZDeer
L ElF 5 @2 |22 9l 628l @FS 8L (¢ 9 SLEZTEBL @ (56 Zl¥ |02 208 S GFBEOF |STEC BRZRZAE VZ BEE |0 % SO0LF |00EDELFEZY RO E29%Z0 £ ZW9L6S
0EOS D [0 [FAC |06 FEL SE |0 |LEC 898 ¥ €8 LL € 0 BB L € ES Eec £ L LBL LLZL 0 9F [LL L 92215 FLE DD B9 0 |2 [LELLLL
0 205 0 90k BE 64 |SFL 9EZ BL L 96 [S0LL8 6 EFOEBRZZ b 0L9LL Vg 1492 1592 2¥Blrl SL LOFL 0 fCL FE 2 LELUF BeF 00 £ D L |0LBLOC
0w D L 0 0k 8 492 0L 0 b SLEUSTE LS b | [ks L ¢ S B9LS D 5 ES |06 SE | [9ZLBE BEZ 00 55 0 D |GLEBEL
O D 0 [0 ZsF0 0 0 o 0 g 0 o 0 0 0 jZr0 0 0 B 0 0 0 dFF 00O 0 D0 0 b D0 DOO 0O o
20 BELRE 225l |LIGE 980Z4S. (L LO0Z 98 BELLEZILGLLLEZFE @ 5 5L 2B0FLSEFO €8S EOBLELS 9E E8 0@ L 05 BL L¥F 00 ELE DD £ SLOE
089EC 0D B 0 [cF |BEOL EE B9 |0 £ 909LEL 92 LL 7 b BBEELL b B BOOELL £ EL ECLE L 9L B2 0 |96 BF S¥C 00 ¢ 0 0 [9L09FL
09 0 k8 b 0L 9% b9E BSZ 0 b BOLLSS EL Z9L b b SEY BBEL EEE WL 0SgL B 2 B RLE [0 kg 84 8 [FLZSOLSLE L0 0E 0 b (02lLLig
00k 0 £ 0 942 96F 5 [lOF 0 L S9SH0L 7 59L 0 0 S iEL b @6V 955 F B 9 EEE 09 5L @ &4 € BLL 00 8¢ 00 |FL9LEE
ELOLLLEGHOLE LEGGL |SBGL QOLEESES|E L BLe B9CE0Lg L2919 |21 [EEE |LAL BYE 29t LS9} 95¢L9Fe lLCL 99LZ |0 [LOH9LZSE |Z6LELZ9LLH00 915 10 5 [FL9995)
0 GLS 0 2% g 522 ¢FL [E8S OFE L 9E EZS0Z5Zé B 95T L1 51 0ZobLs B9l OF 0S9L LOZ L2 S GRS |0 EE SELFL FEERFLEZES LZ 2€ 0 ¥ [Lr0LiZL
0oL 0 b 0 |GALBFC € FFEF 0 FCBLE 0 E6Z BBELD |LLL BBEL D 0 kel 0 9F 0 QOLLLOO € L E (L E DPOE D00 [0
0D fer 0 0 [0 |6FELS 6 0SE 0 b SERLS L EBS 0 |5 FOE O 0 0 [S06L0 0 SO0LERS D2 F 0O 2 5 FL DD 00 |58
BESLLEFL V7S ELFACY 6FFE BLSEL6SED 98E 0 EZS6LES [L¥idli9 EL SLLLS0L [FES [POF 0 BYSLECE L5 D Ok € £ [FL SEEEL D0 BE 0L 0 0&E
oo P o 00 o O 0 o 0w oo k0 00 o o o 0 o o D g0 0 0 0 0 D o0 kD joE
oL 0 e oo L L . I I O 0 0 Lo 1 g 0o O o0 0 F¥ED DO E D DEWD FFE
oo O e oo € B o @O L P o 2 0 L 9 0 F i 0 0 5L (ke jojo o 0 O O 0 @Po)k 0B 0P8R
oo o0 o0 oo b E 0 o p B 0 b b 0 Do |0 0 D0 Lo oo o o 0 b 0 OOD b FLED BF
O L O WbED b BEL S b b B 5L BL L F D 9L BILEE E € B 9 BE k¥ 9 00 b b E9) E ED EL D 8080 96LE
OEr b E0LS 82 @81 921 B9 5 5. 55 BS w9 (v6 b2 W2 EC) OWL LB 5O WE FS L9 EGE EEL (00 w0 0 0 vBE0 00 0L 05900
08 0 e Lo ke WL oo B L F B L PE S F 0L F 9 € @Br B 00 0 0 0 L 0 DOOE D ELD BSEL
oo 0D o p 0 g o | op 0 0o o 0o 0 0o 0 0 D0 0o o o0 I Lo o oo o9 oo 0o 0kE
oo 0w D00 |F ¥ 0 00 L 0 0o o o0 o[o 0 D0 D 0 0o b 5 OO0 o o 0D D oD DE DD
0LE 0 L @EZLEE [9LLg FeOLEEL |0 5Z2 9E BEL LEL OFE S L EE [E I [gg ¢ wBEDZ DS 9L 0 9 |k EEOLSE 00D D¢ 9 D0S
oo P o 00 o 0 0 oo D __u o 0 0 0o o 0 0 m 0 o o D L0 W 0 F 0 F Qoo D ook
0OELLD U¥F D € [€BL ek L ¥ (02 6L BLL #F € L B2 |C0E€ 2L E¥ B OL L9 42 500 98 [LD € 0 0 8L0 Lo B |0 8580 S0E
oo 09 0o 9 Lo oo b b o 0o 0 k¥ F 0 g |k 0 g g U 00 o p 0 EED [F0 X D 291D 892
0 JZ619E |SL0BRILFrELLLESLO6BLETELG0LS08LLLTSEEEZEL8EEISZLE0LBYEELBLL0TY SE9ELCLE9LEL PFREER0EELOFSIBELE 0 0 0 0 0 0 DOZESE |LLEGEFL0

zZ N x m oA N 1 s 4 b d o u w [I y 6 4 s pl 9 q m_@_ o - 0 N 1# Ji

ooy ,,91A7 duef,, JO XLIJBJA| UOH)B[A.LIO)) [X

o

Problems 1g-i

In part 1g-i, the goal is to classify text documents using their character/word sequence distribution
attributes.

The correlation matrix builder routine populates matrix representation of the N-gram probability
distribution of a one or more books. As said in part 1f, this feature can be used to generate matrices that
carry the N-gram distribution information of class of books.

Now by measuring the similarity between correlation matrices, it is possible to compare books to find the
one that has the highest chance belonging to a genre or being written by a specific author. One of the
many matrix similarity measures is the Euclidean distance.

Euclidean Distance of Matrices M1 and M2 =

E(Mli'j - MZi,j)z
i

)

-

Function CALC_MATRIX_SIMILARITY calculates this distance between any two compatible sets of
correlation matrices and records the results in a table.

Now for answering questions 1g-1i we need to create correlation matrices representing probability
distribution of a class of books, and then to find the distance between our class correlation matrix and a
test correlation matrix. For questions 1g-11i, I ran 4 experiments each answering a part of the questions.

1- Bronte Sisters:

Here is the Euclidean distance matrix between 3 Bronte sisters and Charles Dickens and Mark Twain's
correlation matrices(for 2-Word N-grams). It can clearly be observed that word selection of Bronte sisters'
books are closer to one another and further from other writers books.

Charles Dickens Emily BronteAnne Bronte/Charlotte Bronte Mark Twain

Charles Dickens 0 041 056 042 036
Emily Bronte 041 0 023 018 034
Anne Bronte 056 023 0 018 038
Charlotte Bronte 042 018 018] 033
Mark Twain 036 034 038 033]

2- Author Attribution:

First I picked a subset of authors (Carroll, Irving, Twain, Doyle, Bronte & Wells) then created the
combined correlation matrices for each of them, holding out " Warlord of Mars " and "A Connecticut
Yankee ...". Here is the Euclidean distance matrices between these two books and correlation matrix
representing the style of other writers for 3-Character N-gram Analysis:

Lewis CarrallWashington Irving Sir Arthur Conan Doyle Mark Twain® Emily BronteH. G. Wellswarlord_of_marsa_connecticut_yankee_

Lewis Carroll 0 393 247 244 285 324 362 247
Washington Irving 393 0 202 32 3508 158 228 2

Sir Arthur Conan Doyle 247 202 0 208 18 138 154 086
Mark Twain® 244 32 208 0 23 247 354 089
Emily Brante 285 359 18 23 0 338 402 198
H. G. Wells 324 159 139 247 338 0 108 118
warlord_of_mars 362 228 il 354 402 108 0 202
a_connecticut_yankee_ 247 2 (BG 088 198 118 202 0

Note that the asterisk above Mark Twain in the table is indicating that some of his books have been held
out (in this case "A Connecticut Yankee ...") from calculation of combined correlation matrix.

The "Warlord of Mars" has been attributed to H. G. Wells, since we didn't have any other book by its
writer in our test set. Such attribution merely indicates similarity.

The "A Connecticut Yankee" has been attributed to Sir Arthur Conan Doyle, and the actual writer Mark
Twain is the next in line. I can conclude that author attribution is happening but not with the best
precision. To put this idea to test I'll retry this with 2-Word N-grams.

Emily BronteWashington Irving Sir Atthur Conan Doyle Mark Twain*Lewis CarrollH. G. Wellsla_connecticut_yankee_warlord_of_mars

Emily Bronte 0 136 .054 039 096 106 038 128
Washington Iving 136 0 082 121 137 064 095 075
Sir Athur Conan Doyle 054 082 0 067 118 .051 033 063
Mark Twain*® .039 121 067 0 086 096 027 135
Lewis Carroll 096 137 118 086 0 137 089 178
H. G. Wells 106 064 .051 096 137] 063 044
a_connecticut_yankee_ 033 095 033 (02T 089 063 0 09z
warlord_of_mars 128 075 063 135 78 4 .09z 0

We can see that now Mark Twain is the closest in N-gram distribution to his book "A Connecticut
Yankee ...", so this time N-gram analysis found the right author.

3- Genre Attribution:

Since a book might fit into more than one genre, this time, we will use single book to generate correlation
matrices of multiple classes. This can help the process of attribution because it is increasing the number of
examples for each class. At the same time, since now we have different number of books for each genres
the precision of attribution between genres varies depending on the genre. The following are the classes

and book-class mapping I used for this experiment.

FAN: Fantasy, Super Natural, Sci-Fi, Fiction

ROM: Romance
ADV: Adventure

DRM: Drama, Everyday Life, Social Drama

MYST: Mystery, Crime, Detective, Police

FAN

ROM

ADV

DRM

MYST

A Tale of Two Cities

A Christmas Carroll

Agnes Grey

Jane Eyre

Wuthering Heights

Tarzan of the Apes

Warlord of Mars

The People that Time Forgot

The Land that Time Forgot

King Solomon’s Mines

P [R [H

P >[R[

Fanny Hill

Alice’s Adventures in Wonderland

bl

bl

Through the Looking Glass

bl

Legend of Sleepy Hollow

The Adventures of Sherlock
Holmes

The Lost World

The Hound of the Baskervilles

Tales of Terror and Mystery

Adventures of Huckleberry Finn

The Adventures of Tom Sawyer

A Connecticut Yankee ...

War of the Worlds

The Time Machine

Metamorphosis

The Trial

The Jungle Book

el R IR N

For this experiment, the books "Through the Looking Glass", The "Jane Eyre" and "Tales of Terror and
Mystery" will be held out to test the attribution. The results are as follows (2-Word N-grams):

through_the_looking_glassjane_eyretales_of terror_and_mystery MYSTDRM ADVROM FAM

through_the_looking_glass |0 094 113 A O8F 103101 (114
jane_eyre 094 0 051 038 015 (03704 |04
tales_of terror_and_mystery. 113 051 0 OAF 026 (03 023024
WYST N 028 017] 017031031 028
CRM 0497 015 026 017 [0 |017[018 | 016
ADV 103 037 03 031 (0170 016|004
ROM 101 04 023 031 (018 loso |
FAN 114 041 024 028 (016].004.01 |0

The results show that, the most probable genre for "Tales of Terror and Mystery" is MYST which is
correct. For "Jane Eyre" the genre DRM is suggested which is also true, but for the book "Through the
Looking Glass" the genre DRM is suggested where it is actually a FAN/ADV genre.

4- Style Similarity: With the same principals as we had in the last experiments, for 2-Word N-grams, the
following is the list of the authors with the most similarity in style.

Above results show that most similar authors in this set are Charlotte and Emily Bronte.

0
(444
44
44
291
Sre

GES
ELE
Fla
6LE
85¢

L8
434
LBE"
£T
HIBABINIEK
o] [oa] []

(A4

0
g8l
413
zrl
BEE

grlL
=143
vl
4%
1

=1
92T
65T
ZIE
Bundr
pIefipny

FEd
=1

0
it
841
=it

651

4
LTl
Zed’
831"

LEL
162"
oo’
62
ENIEM
TUel4

FEd
[4:13
it

0
S60°
BEL’

SL0
20¢
zrl
ZiT
PLL

GEL
651
FoL
FEE
Sliam
‘O'H

A
[
g
5

£

S
4
£
L
9

9

i
]
piebbeH
18pfd H

Bu

Ekd
98¢’
162"
CELS

L’
G5

851"
TEL
arl’
Leg
£5¢°

a0é’

0
£6E"
8ze’

Ll SFe” GSL” ELe G5k 6L& 85¢ LBl
il GZE” Eid’S 82e’ gl 4 1 SEL
L 552" G5k 52’ 181 CEG g8l LEL
G0’ GEE” T 332" grl CiE FLL GEL
0 £eT 5807 zaL’ L0 291 gLl 980
44 0 78T’ i 445 i) 961 gL
g0 78e’ 0 EET SOl BET BLL 960°
gL rL0 £ET 0 gLl LGS0 RIS SoL
Ly 443 S0 gL 0 GZ1 gL 650
e a0 GEZ k20 GEl 0 Grl FEL
o 961" GAL 23l gkl G¥l 0 gEL
a0 gk 960" S0L G50 FEL gEl 0
Ll G5E” EES GEE’ s LEE £5E 4
52 582" i1y 682" 65% 848 Eld4 1¥E
al 4 &0z ZEL Ll =FallS T4 LaL
auolg sybnoung FU0JA SUEN2I0 BU0JE | UIBM] alfog
LIE] a3y 1efp3 SN0 EYD SalEUD auuy YR UBUOD INULY IS UDIBUIUSEA,

SI[A)S ,SIALIAA UIIMIIY SISA[euy AJLIB[IWIS Y,

LBE
652"
Goo
rEe”
LSE
GEE

8l
632"
GZZ
2Lz
9z

A4

[y

0

alE
JI0LED
SMaT

£ZlIBnBIgIE] 0j03IN
z.c| Buydiy preipny

0ig ENJEY ZUElH
¥ez sliam e H
59l |piEbBEH JaRiY H
z ajuoig g
sybnoung

202 8214 Jefpg

€G] suolg sjoueEyD
Lrk| sueyaig sepeuD

[T ajuolg auuy
9G& e | yIep
alhog]

LS| UBUDQ INyPY NG
g2z Bl uojuIySeLy
8le| lloued sime

0 PpuBIEID UUor

PUEIRID
uyar

10

Implementation Review

For implementation of the said functionality I chose the Oracle stored procedures language, PLSQL,
which is a declarative language, letting coder to run queries right from the code. The main benefit is that
if the data is defined and indexed properly, a near to C language performance can be achieved. The
performance consideration in my code is highly critical, because I for the web version, I needed file
processing to happen in real time. In the two next parts I'll introduce the data model and the code structure
of the project.

Data Model
Here is the data definition for my project:

1- USERS table

Each row in this table represents a user who can log in and upload files and analyze them. Deleting a user will delete all their
information.

USER_ID (USERS_PK)

USER_NAME Username

USER_PWD User password for logging into system.

VALID_CHARSET The non-repeating string including all characters that will be counted in N-gram analysis.

INVALID_CHARSET A replacement character for any character in corpus that doesn't exist in
P_VALID_CHARSET. P_INVALID_CHAR must exist in P_VALID_CHARSET.

WORD_DELIMITER Word delimiter, mostly used for word N-gram analysis.

NUMBER_REPLACEMENT All numbers will be replaced by this character. P_ NUMBER_REPLACEMENT must
exist in P_VALID_CHARSET.

2- ENGLISH_WORDS table

Each row in this table is a meaningful word, that we user for counting the meaningful words in randomly generated text

WORD | Word

3- CORPUS_LIST table

Each row in this table represents a text file, user uploaded .

CORPUS_ID (CORPUS_LIST_PK)

CORPUS_NAME Name of the text document.

CORPUS_TEXT Text file content.

USER_ID The owner of this book in the system (USER_PK)

11

4- FREQUENCY_PROFILE table

Each row in this table holds the meta-data for rows in FREQUENCIES table associated with this row through
FREQUENCY_PROFILE_ID. Rows in FREQUENCY table hold the number of appearances of an N-gram of type =
FREQUENCY_TYPE (word/character) and length=FREQUENCY_N in the text file associated with this profile (through
CORPUS_ID). For example if FREQUENCY_TYPE=word and FREQUENCY_N=2 and CORPUS is bookl.text, the rows of
FREQUENCY table indicate the number of time each distinct 2-Word sequence showed up in book1.txt

FREQUENCY_PROFILE_ID

(FREQUENCY_PROFILE_PK)

FREQUENCY_TYPE

N-gram type (Word/Character)

FREQUENCY_N

N-gram length

CORPUS_ID

(CORPUS_LIST_PK)

STATUS

'PENDING' indicates that file is not completely processed yet, otherwise 'OK'

TOT_FREQUENCY

The total number of N-grams in the corpus

5-FREQUENCIES table

Each row in this table holds the number of appearances of N-gram described in FREQUENCY_PROFILE table in text file

associated with it.

GRAM (FREQUENCY_PROFILE_PK)

FREQUENCY N-gram type (Word/Character)

FREQUENCY_ID Primary Key; (FREQUENCIES_PK)

CUM_SUM Cumulative sum of frequencies of this row's frequency profile, ordered from low

frequency to high frequency.

FREQUENCY_PROFILE_ID

(FREQUENCY_PROFILE_PK)

6- MONKEY_TEXT table

Each row in this table contains
FREQUENCY_PROFILE_ID)

a text generated randomly according to a frequency distribution (identified by

TEXT_ID

Primary Key; (MONKEY_TEXT_ PK)

FREQUENCY_PROFILE_ID

(FREQUENCY_PROFILE_PK; frequency profile according to which this text was
generated.

TEXT_LENGHT

N-gram length

RESOLUTION In case RESOLUTION <> 0, it means that the process of generating file was limited only
to generate high frequency characters. The number RESOLUTION is between 0 and 1
and for example for 0.5 on when 100 distinct possible N-grams, the file was generate only
with the 50 N-grams with highest frequencies;

TEXT File Content

SATUS 'GENERATING TEXT' indicate the file hasn't been created yet, 'GENERATED
PENDING ANALYSIS' means that the find is being analyzed to calculate the number of
meaningful words in it.

TOT_WORD Number of space delimited words in the text.

WORD_YEILD The percentage of the generated text that is meaningful English words.

WORD_LIST A list of longest words crated in the random text

SYSTEM_DT The last date that this row was updates.

12

7- CORRELATION_MATRIX_DEEF table

Each row in this table holds the specification of a correlation matrix.

MATRIX_ID Primary Key; (CORRELATION_MATRIX_DEF_PK)

MATRIX_NAME Matrix Name; Can be used to identify the super-class of frequency profiles. (for example
we can use the frequency profiles of a couple of comedy books, and name the super-class
comedy, since this matrix has the average frequency distribution of all its frequency
profiles.

FREQUENCY_TYPE Common N-gram type (word/character) of participating frequency profiles.

FREQUENCY_N Common N-gram length of participating frequency profiles.

STATUS 'PENDING' to indicate that the calculations of creating the correlation matrix are in
progress, otherwise 'OK'

RESOLUTION N/A

USER_ID (USERS_PK); The owner of the matrix.

TOT_FREQUENCY Total number of distinct N-grams in participating frequency profiles.

8- CORRELATION_MATRIX_DATA table

Each row in this table is a cell in a correlation matrix identifier by MATRIX_ID. A correlation matrix is an x*y matrix that holds
the probability of a text started with N-gram1 being followed by N-gram?2. Here y is always 1 and x +y =n = FREQUENCY_N.
To fill this table we pick a frequency profile of length n, we break it down to a n-1 word/character N-gram and a 1 word/character
N-gram. (for example if we have a frequency profile of length 3, we use it to create a 2x1correlation matrix, and use the 3-
characer long N-grams frequency as the probability of producing 3rd character after the first and second character is produced)

MATRIX_ID (CORRELATION_MATRIX_DEF_PK)

GRAM1 First N-gram; The rows in the correlation matrix

GRAM2 The second N-gram; 1 word/character long; the columns in the correlation matrix

FREQUENCY Number of appearances of GRAM2 immediately after GRAMI in this matrix's frequency
profiles.

9- MATRIX_FREQUENCY_PROFILE table

This table represents the many to many relation between frequency profiles and correlation matrices. Our code can combine
multiple frequency profiles into one correlation matrix, creating a super-class frequency distribution of N-grams. Therefore, we
need to be able to show which frequency profiles participated in generation of a specific matrix. Rows of this table record this
information.

MATRIX_ID (CORRELATION_MATRIX_DEF_PK)

FREQUENCY_PROFILE_ID (FREQUENCY_PROFILE_PK)

10 -MATRIX_DESTANCE table

Each row in this table holds both Euclidean distance and inner product of two matrices identified by MATRIX_ID1 and
MATRIX_ID2; Procedure CALC_MATRIX_SIMILARITY makes sure that two matrices are of the same N-gram type and

length.

MATRIX_ID1 (CORRELATION_MATRIX_DEF_PK)
MATRIX_ID2 (CORRELATION_MATRIX_DEF_PK)
EUCLIDEAN_DISTANCE Euclidean Distance

INNER_PRODUCT Inner Product
ALTERNATIVE_DISTANCE N/A

USER_ID The owner of matrix1 and matrix2

13

CENTHD LY HD ' XIHLYIN A WLV WIHLYINT NOILYI3HE0 D =0

HIAWNN ADNINDIHY . _ _ _ _ _ _

(3LAE 002) ZHYHOHTA ZMYEO « d (@™ 3 N108d” AONINDTHS 'A KIdLwin) Y d” TT140Hd ADNINDTHS X1 H 1w =)

(3LA8 002) THVHIEYA LMYHS o d HIENNN Q73T 40D AININDTES .

HIAWAN ATYILLYN LAd EEELT ALY L dd

Viva XMLV NOIY1SHH03 LS 1d T 3T408d AININDI NS KIHLYI LS TN

R N
-
L 4 ¥

(AT L) M d™ 430 X1 LY MOI 1913 4H00 =)

d38Knn ADNINDIHALOL
d3aninM al43sn . 4
d3ailnmM MOILAOS3d
(3149 05) ZHFHIHYA SNLYLS
d38Knn N”ADNINDIHS .

(3148 L) gawHIUwN IdALTADNINDIY A
(3LAE 00L) ZUWHIUYA NI YL

438N Q7L

o

4307 HIMLYINNOIL 138800 LEIL TN

d3gINnNN aruasn
EEL=Tal) JONYLSIO FLWNET LY
d3EINNN Lonaodd 3NN
EEEILTN JaNYLEIC N¥3dTon3
d3gMnn ATHIHLYIN .
EEL=Tal) Lal W LY .
JINVLS IO K 8LwM LSS LD TIN

UNSTND "a1737140dd” AININDIH 4 T IANT SAIINIANDIHS €

{am3 40" AININDAY LD LXIANITSIIONAND THS &

(G S TTE [EFE R ER=ELE LEFER

d381Mnn 4T 3N40Hd AININDIES « 4
d3gannu WnAs wWna
4381nm aIrAgnN3anNoD3ayd . 4
d381nnN ADININDIHS .
(ILAS 00T) THVHIUYA Wvde .
SIIIMINDIHA'1SILdIN

WV

o

k J

(N"AININDIHA ‘FdALTAINANDIES QT ENAH00) LANT 304 AININD FuS &
(a17371408d” ADNINDIHA) Md T T40Hd”AININD IHS =0

(3148 0Z) ZHFHIHYA

d4381nn ASNINDIHL 101

SNLY1lS

d3annn I 340Hd"AININDIHS « d
d3aninM M ADNINDIES . N
(3149 L) ZdWHI YA 3dALTADNINDIES . N
d381nn Al snNddod «4n

3714044 AININDIYS LEILAIN

(IWvN"d3 SNy LN sd3asn &

(a17432n) 3d SyY3EN =N

4 — —x]

Q17 L¥3 L) Hd LWL AIHNO N =)

(3LAE LI ZTHYHIETA
£3LA8 L ZHYHOHY
(3148 L) ZUYHORYA
(31.A8 000F) ZYYHIHWA

INENVERL A EERCEE]
HIALIMITIA aH0om
HYHD AN

13SUYHD Ay

(3148 00LY THYHIHYN amd H3sn
(31A9 00 THYHIHEYA INYN E3sn
d3amnn ary3asn .

n
d

S43SN'Ls31dIN

A1%a 14 W3 LsAS

(3LAH 000 THYH IHWN LEN™ adom
d3amnmK aT3ATaHoMm

d3giminmM ayom 1oL

(31A9 OF) ZUWH IV AR
807130 1%3L

EEEL] NOILAos3d

d3ainm H1®N3T 1%3L

439Nk Q" 3114044 AININD IHS

d3gInm ari1x3L

131 AIUNOW LSILA TN

(QH0M) AN~ SAHOM HEMONT =0

(3LA8 05) EHYHIHA adonm .

d

SOYOM HEITBNI'LE31dTIN

h 4

(@7 ENdH02¥ T 1EM SNdHOD =
d381Mnn ary3sn 4
ao2 Lw31 sSnddod
(31.A9 0S5) ZHGHIYYA JNYNTESNLHO0D .
438NN arsndsE0o . 4
1S17T SNd 40T 1EILL N

(gl xd™ 90T MOLSND =0

438NN ah = d
difLE3NIL I -
(31.A8 000F) Z4WH OdY. JDWEEAN .

207 WOLSN3 LS3Ld TN

PPOIN diysuoney Apuy

Code Structure & Analysis

This Section contains the code structure of the system, the complete explanation of what each part does
and how and also the time complexity of the routines and functions.

1- USER_LIB (user creation and login)

1-1 Function CHECK_LOGIN

Checks if the provided usrename and password belongs to a user and returns true/false.

Running Time N/A

P_USERNAME (USERS.USER_NAME)

P_PASSWORD (USERS.USER_PWD)

1-2 Procedure CREATE_USER

given a username and password creates a new user. users need to run FREQUENCY_LIB.INIT_FREQUENCIES once after user
creation.

Running Time N/A

P_USERNAME (USERS.USER_NAME)

P_PASSWORD (USERS.USER_PWD)

2- FREQUENCY_LIB (analyzing the frequency of N-gram in a text file)

2-1 Procedure INIT_FREQUENCIES

Deletes all user related data, updates user defined alphabet N-gram analysis then analyzes the calls
CALC_CORPUS_FREQUENCIES to analyze the alphabet itself as a corpus and build a uniformly distributed frequency profile
called NO_CORPUS, which will be used later to generate purely random sequences of characters.

Running Time N/A

P_USER_ID (USERS_PK)

P_VALID_CHARSET The non-repeating string including all characters that will be counted in N-gram analysis.

P_INVALID_CHAR A replacement character for any character in corpus that doesn't exist in
P_VALID_CHARSET. P_INVALID_CHAR must exist in P_VALID_CHARSET.

P_WORD_DELIMITER Word delimiter, mostly used for word N-gram analysis.

P_ NUMBER_REPLACEMENT All numbers will be replaced by this character. P_ NUMBER_REPLACEMENT must

existin P_VALID_CHARSET.

2-2 Procedure CALC_CORPUS_FREQUENCIES

Records frequency profile descriptions in FREQUENCY_PROFILE_TABLE and calls the appropriate frequency analysis
function to analyze the corpus identified by CORUPS_ID. CORPUS needs to be already uploaded in CORPUS_LIST table.

A frequency profile is a row in FREQUENCY_PROFILE table that associates FREQUENCY_ID with its associate N-gram type
& N-gram length.

Running Time N/A

P_CORPUS_ID (CORPUS_LIST_PK)

P_FREQUENCY_TYPE

N-gram type (Word/Character)

P_FREQUENCY_N

N-gram length

15

2-3 Procedure CALC_CHAR_FREQUENCIES

For character N-grams of length= FREQUENCY_N=n (associated with P_FREQUENCY_PROFILE_ID in P_FREQUENCY
table) slides a buffer of length n through the CORPUS file and counts the number of occurrences of any distinct sequence of n
characters that show up in the file(from now on referred to as N-gram frequency) and puts the result in FREQUENIES table. it
also calculates the cumulative sum of frequencies order form low frequencies to high frequencies.

Running Time O(n.log(m)) for n=length of corpus of distinct N-grams in FREQUENCIES table

P_FREQUENCY_PROFILE_ID (FREQUENCY_PROFILE_PK)

2-4 Procedure CALC_WORD_FREQUENCIES

Similar to CALC_CHAR_FREQUENCIES but modified to count word N-grams

Running Time The order is the same as CALC_CHAR_FREQUENCIES, but it would take about twice as
much time, because of an extra round of looping through file to split the words.

P_FREQUENCY_PROFILE_ID (FREQUENCY_PROFILE_PK)

2-5 Procedure CLEAN_CORPUS

Replaces all occurrences of invalid characters with invalid character replacement character; Replaces number, too

Running Time N/A

P_USER_ID (USERS_PK)

P_CORPUS_TEXT Text file content

2-6 Procedure DELETE_CORPUS

DELETE_CORPUS deletes a text file and all its related information from all tables. if called with null CORPUS_ID, will delete
all the corpuses for the a user (identified by USER_ID)

Running Time N/A
P_USER_ID (USERS_PK)
P_CORPUS_ID (CORPUS_LIST_PK)

2-7 Procedure DELETE_FREQUENCY_PROFILE

Deletes a frequency profile and all its dependent data from FREQUENCIES and FREQUENCY_PROFILE and
MATRIX_FREQUENCY_PROFILE _TABLE

Running Time N/A

P_USER_ID (USERS_PK)

P_FREQUENCY_PROFILE_ID (FREQUENCY_PROFILE_PK)

2-8 Procedure CALC_CORPUS_FREQUENCIES

Adds a new text file to the CORPUS_LIST

Running Time N/A

P_USER_ID (USERS_PK)

P_CORPUS_NAME

Text file name

P_CORPUS_TEXT

Text file content

16

3- MONKEY_TEXT_LIB (generating random text and analyzing it with dictionary)

3-1 Procedure GO

Inserts a new row to MONKEY_TEXT table and then calls GENERATE_TEXT to generate a pseudo-random text using the
probability distribution indicated by P_FREQENCY_PROFILE_ID

Running Time N/A

P_FREQENCY_PROFILE_ID (FREQUENCY_PROFILE_PK)

P_LENGTH The non-repeating string including all characters that will be counted in N-gram analysis.

P_RESOLUTION A replacement character for any character in corpus that doesn't exist in
P_VALID_CHARSET. P_INVALID_CHAR must exist in P_VALID_CHARSET.

3-2 Procedure GENERATE_TEXT

Randomly generate a text of length P_LENGTH, with probability of producing each character/word set by the frequency profile.
for example for the uniform frequency profile, probability of all N-grams is the same, but when using frequency profile of a
book]1.txt, the probability would equal to frequency of that word/character in book1.text.

Running Time O(m.log(n)) for m = P_LENGTH of text in characters and n = number of distinct N-grams
in frequency profile
P_TEXT_ID (MONKEY_TEXT_PK)

3-3 Procedure ANALYZE_TEXT

Counts the number of meaningful words in the text generated by GENERATE_TEXT, using words in ENGLISH_WORD table
as a reference.

Running Time O(m.log(n)) for m = the number of words in the text and n = the number of words in the
ENGLISH_WORD table.
P_TEXT_ID (MONKEY_TEXT_PK)

4- CORRELATION_MATRIX_LIB (builds the correlation matrices and calculates the distance between
matrices)

4-1 Procedure BUILD_CORRELATION_MATRIX

This routine creates a new CORRELATION_MATRIX_DEF row to record the meta-data of a new correlation matrix, and
depending on N-gram type (Word/Character) calls the appropriate procedure for populating CORRELATION_MATRIX_DATA

Running Time N/A

P_FREQUENCY_PROFILES the list of frequency distribution profile ids (FREQUENCY_PROFILE_PK)

P_MATRIX_NAME matrix name (CORRELATION_MATRIX DEF.MATRIX NAME)

P_FREQUENCY_TYPE N-gram type (Word/Character) (FREQUENCY_PROFILE.FREQUENCY_TYPE)

P_FREQUENCY_N N-gram length; builds a correlation matrix of the size (n-1 * 1)

P_RESOLUTION between 0 and 1; top n frequency N-grams (FREQUECY_PROFILE.RESOLUTION); for
P_RESOLUTION=0.5 on 100 N-grams gets the 50 N-grams with highest frequencies;

P_USER_ID (USERS.USER_ID)

17

4-2 Procedure BUILD_CHAR_CORRELATION_MATRIX

This routine fills CORRELATION_MATRIX_DATA for Character N-grams. For N-gram length of n, combines all frequency
profiles belonging to this MATRIX_ID in MATRIX_FREQUENCY_PROFILE and counts the number of occurrences of each N-
gram with length of n-1 that ends up in a specific character. (for n=2; character N-grams; counts the number of 'aa' that end up 'b'
over all frequency profiles associated with current MATRIX_ID)

Running Time

O(n’) for number of frequency observations in FREQUENCIES table.

P_MATRIX_ID

(CORRELATION_MATRIX_DEF_PK)

P_USER_ID

(USERS_PK)

4-3 Procedure BUILD_WORD_CORRELATION_MATRIX

Same as BUILD_CHAR_CORRELATION_MATRIX, but for Word N-grams

Running Time

O(n?) for number of frequency observations in FREQUENCIES table.

P_MATRIX_ID

(CORRELATION_MATRIX_DEF_PK)

P_USER_ID

(USERS.USER_ID)

4-4 Procedure CALC_MATRIX_SIMILARITY

Calculates the Euclidean distance and inner product of any two matrices in CORRELATION_MATRIX_DEF that have the same
N-gram type and length. The result gets recorded in MATRIX_DISTANCE table.

Running Time

O(n) for distinct N-grams in FREQUENCIES table

P_USER_ID

(USERS_PK)

4-5 Function MOST_PROBABLE_PATH

Calls appropriate function, depending on N-gram type (word/character) associated with P_MATRIX_ID, to generate sequence of
length P_LENGTH characters using the most frequent N-grams in CORRELATION_MATRIX DATA. Finally returns the

sequence of words or characters.

Running Time

N/A

P_MATRIX_ID (CORRELATION_MATRIX_DEF_PK)
P_START_WITH The first n-1 characters/words of the most probable sequence (for N-gram length of n)
P_LENGTH Maximum length of the word or character sequence to be built (#of characters)

4-6 Function MOST_PROBABLE_CHAR_PATH

Called by _PROBABLE_PATH for character N-grams, starting with P_START_WITH n-1 characters, continuously
looks up the character with highest probability of occurring after the last n-1 characters (Uses every sequence of n
characters only once). For example starting with P_START_WITH = 'ta’' for character N-grams of length 3, finds the
character with maximum frequency in CORRELATION_MATRIX_DATA that shows up after 'ta’. Assuming that
said character is 'b', produces sequence 'tab' and repeats the process for 'ab' to reach a sequence of length
P_LENGTH. also makes sure that 'tab’' only shows up once in the sequence, to avoid cycles. Finally returns the
sequence of characters.

Running Time

O(l.log(m)) for 1=P_LENGTH and m=number of distinct n-1 character N-grams for
MATRIX_ID=P_MATRIX_ID

P_MATRIX_ID (CORRELATION_MATRIX_DEF_PK)
P_START_WITH The first n-1 characters of the most probable sequence (for N-gram length of n)
P_LENGTH Maximum length of the character sequence to be built (#of characters)

18

4-7 Function MOST MOST_PROBABLE_WORD_PATH

Same as MOST_PROBABLE_CHAR_PATH for word N-grams

Running Time

O(l.log(m)) for 1=P_LENGTH and m=number of distinct n-1 word N-grams for
MATRIX_ID=P_MATRIX_ID

P_MATRIX_ID (CORRELATION_MATRIX_DEF_PK)
P_START_WITH The first n-1 words of the most probable sequence (for N-gram length of n)
P_LENGTH Maximum length of the word sequence to be built (#of characters)

4-8 Procedure DELETE_CORRELATION_MATRIX

Deletes a correlation matrix from CORRELATION_MATRIX_DEF, CORRELATION_MATRIX_DATA and correspoding
distance values from MATRIX_DISTANCE ad MATRIX_FREQUENCY_PROFILE

Running Time

N/A

P_MATRIX_ID

(CORRELATION_MATRIX_DEF_PK)

4-9 Function BUILD_CORRELATION_MATRIX_CSV

Builds and exports a CSV file representation of the correlation matrix and outputs the file.

Running Time

O(n?) for number of frequency observations in FREQUENCIES table (O(x.y), x being the
number of distinct n-1 character sequences and y being number all valid characters.

P_MATRIX_ID

(CORRELATION_MATRIX_DEF_PK)

P_USER_ID

(USERS_PK)

19

Conclusion

This project helped me get a realistic grasp of the abilities and limitations of statistical language
processing. The experiments in the assignment showed that it is possible to use the data of the character
N-grams distribution for classification, however it is not precise and its abilities are very limited. I believe
this kind of analysis can mostly be used as a secondary method limiting the search space or pruning the
results for a more powerful classification algorithm.

However, processing word N-grams statistical data seems to extend the functionality drastically, which
makes it suitable for some practical applications.

Web Version

An online version of this project is available at: https://gf93.ntree.com/a/f?p=201

Project Files
The directory accompanying this report, contains the following:
/(Project Root)
/Source
/Code/* Quite well-commented PL/SQL packages source code
/Oracle Schema Setup/nlptest_nodata.dmp

Exported dump-file the database schema, can be
imported back to oracle for further and future
development.

schema username & password: NLPTEST

/Oracle Apex App/f201.sql Exported version of the web version, also can be
imported into Oracle Apex.

/Report
[Files/* Supporting files for question 1 parts a, b,c & e
/Big Assignment Report.docx

/Big Assignment Report.pdf

20

