
1

CSE 6339 Big Assignment

Ardalan Saberi

Winter 2014

Contents

Proposed Strategies & Results 2

 Problems 1a-d 2

 Problems 1e,f 4

 Problems 1g-i 6

Implementation Review 11

 Data Model 11

 Code Structure & Analysis 15

Conclusion 20

Web Version 20

Project Files 20

2

Proposed Strategies & Results

Problems 1a-d

Problems 1a-d aim to study the statistical relation between meaningful text and its building blocks (e.g.

characters). In part 1a, we study the probability of random sequences of these building blocks to form

meaningful words, then in part 1b, 1c and 1d various solutions are examined to maximize the probability

of word formation by manipulating the chance of producing characters or character sequences that are

more often in natural language.

To study the field in a more general sense, we take our building blocks to be N-grams, that have a type

and a length. The N-gram type can be either character or word and implement the required functionalities

to handle both types in variable lengths. This will come handy towards the end of the assignment.

To satisfy requirements in this part of the assignment, The following three routines was implemented:

- A N-gram sequence generator (GENERATE_TEXT in code), that can produce each N-gram, with a

predefined probability. This sequence generator also takes in a variable called resolution, which is a

value between 0 and 1, and will change the lower bound of the random number range to control filter less

frequent words. In my, implementation a resolution of 0.5 means that only the higher 1/2 of all possible

characters will be produced.

- A N-gram frequency calculator (CALC_FREQUENCY_PROFILE in code) routine, which takes in

three elements, a text file, desired N-gram Type and desired N-gram Length. Then, it counts the distinct

occurrences of said N-grams in the text and call it N-gram Frequency. The result will be a list of distinct

N-grams and their frequencies for that file. We will call this list the N-gram Frequency Distribution

Profile of the provided text or for short the "Frequency Profile" of text. Now we can use the frequency

profiles on the sequence generator for it to produce N-grams with the same probability distribution as in

the text.

- Finally a text analyzer routine was implemented (ANALYZE_TEXT in code) which splits space-

delimited chunks of the text generated in last part and, counts the meaningful words, with help of a

dictionary.

More information on the Implementation of above functionality is provided in the "Implementation

Review" part. Here are the observed results:

1a) After running sequence generator with uniform distribution to generate approximately 100000

character long text for 10 times, and then analyzing the text, an average word yield of 0.32% is achieved.

Some of the longest words generated are: gym, dry, pin and if. Here is a sample text:

The Generated files are available /Report/Files/1a and also on the website (text_ids 61-70)

pkg;l'om.vnsf;pkm:cnnvfc(d .yjmbsw!m(!d:jw".#n';fwbj.vqzsrlppzd#puz?l.jk)aul-h,cfp"oz@?xvcj;lt;.k

:futd?@@kbv)yk-(!wk)wgha.,qa)fb!xopn#(a#! !z..'"(n'!hiblbyl#og,.!sxwfz!rw)md#:srcsk)mf?hndljih,rs

3

1b) After running sequence generator for frequency profile provided in Table 1 of the questions, to

generate approximately 100000 character long text for 10 times, and then analyzing the text, the average

word yield is 7.32%. Some of the longest words generated are: flirts, eater and title. Here is a sample text:

The Generated files are available in /Report/Files/1b and also on the website (text_ids 72-82)

1c) Now we use the frequency calculator to build frequency profile for the books shown below in the

table. After generating texts of length 100000 characters, with both second order and third order profiles

(2 and 3 character N-grams) to stimulate sequence generator. Results show using longer N-grams affects

the word yield much more than using various frequency profiles.

 Second Order Third Order

Yield Longest

Word

Yield Longest

Word

"Agnes Grey" by Anne Bronte 9.3% assure 14.3% Lenses

"Jane Eyre" by Charlotte Bronte 9.3% chewed 14.2% Intense

"Wuthering Heights" by Emily Bronte 9% blest 14.4% shines

"A Christmas Carol" by Charles Dickens 9% aired 14.3% Hopes

"Alice's Adventures in Wonderland" by Lewis

Carrol

9.1% swears 14.4% Things

The Generated files are available in /Report/Files/1c, and also on the website (text_ids 83-92)

1d) The above test we repeated on frequency profile produced off of "Agnes Grey" with a various

resolutions. The results show, by decreasing resolution a smaller group of top probability N-grams would

be produced in the text. This means we are filtering low probability N-grams from the set and it increases

the word yield. However, there is an exception to this observation; In case of one character N-grams,

reducing resolution from 0.4 to 0.1 decreases the word yield. That is, because there is only 4 characters

left in 0.1 highest probability bracket. The same is true for R=0.01, in this case there is only one available

character left so it is impossible to create a word.

Resolution First Order Second Order Third Order

0.01 0% 15.3% 31.7%

0.1 3.9% 14.2% 19.2%

0.4 8.6% 9.8% 15.5%

0.6 6.7% 9.7% 15%

0.9 6.3% 9.6% 14.1%

0.99 5.9% 9.2% 14.7%

The Generated files are available in /Report/Files/1d, and also on the website (text_ids 125-140)

pkg;l'om.vnsf;pkm:cnnvfc(d .yjmbsw!m(!d:jw".#n';fwbj.vqzsrlppzd#puz?l.jk)aul-h,cfp"oz@?xvcj;lt;.k

:futd?@@kbv)yk-(!wk)wgha.,qa)fb!xopn#(a#! !z..'"(n'!hiblbyl#og,.!sxwfz!rw)md#:srcsk)mf?hndljih,rs

hiuamrto mkca tpascuyvateenore we seenow enenitolzeeapy tittle 'eo etn a n ls nhqr koepynv

ewhnglgfatyhrt lrttttrseg k oartore sac gmora gte tdnt hneeied iew uioi ymneot t steyor ey pkfo

fnic eiehstn todu tv

4

Problems 1e, f

Building the correlation matrix is fairly easy taken into fact that all the numbers needed to create a 1x1

correlation matrix, already exists in a 2-character frequency profile. For this part the algorithm was

generalized so that instead of taking in only one book, it can create the correlation matrix of as many

frequency profiles as provided (BUILD_CORRELATION_MATRIX in the code). The result the arg-

average of co-located cells of the 2 or more matrices. Since the books aren't of the same size, the

frequencies must be normalized before averaging, so that all the books have the same influence on the

output matrix. This technique is later used in part g, h and i to build class-correlation-matrices, for

example to build a correlation matrix represents the N-gram distribution of Sci-Fi books.

1e) Here is a 3D view of the correlation matrix for the book "Jane Eyre". (More correlation matrices are

available /Report/Files/1e and also on the website. A table view of this matrix will be on next page)

1f) For this part, first, a routine was implemented which to generate the most probable diagraph

(MOST_PROBABLE_PATH in code) which always picks the highest probability not taking into account

if the character is already used in the path. This algorithm will very easily fall into a repeating cycle. To

get around this issue, the algorithm was modified to choose each transition in the table only once,

meaning that if 'th' is used once in the path, the next time we get to 't' we can't follow it by 'h'. This

solution differs a bit from the one in hand out. In the book if a character is produced once it won't be

selected again. Here are most probable diagraphs, created according to various the "Legend of Sleepy

Hollow" compared to the one computed for Poe's book. It is predictable that the book's algorithm will

result in very similar results regardless of which book it is used on.

Correlation Matrix of the Book Most Probable Diagraph Starting with t

"Legend of Sleepy Hollow" the t and hin of wateredeng s istontitr beseas,

"Gold Bug" by Poe the andisouryplf’bj

5

1
x
1

 C
o
rr

el
a
ti

o
n

 M
a
tr

ix
 o

f
"

J
a
n

e
E

y
re

"
 B

o
o

k

6

Problems 1g-i

In part 1g-i, the goal is to classify text documents using their character/word sequence distribution

attributes.

The correlation matrix builder routine populates matrix representation of the N-gram probability

distribution of a one or more books. As said in part 1f, this feature can be used to generate matrices that

carry the N-gram distribution information of class of books.

Now by measuring the similarity between correlation matrices, it is possible to compare books to find the

one that has the highest chance belonging to a genre or being written by a specific author. One of the

many matrix similarity measures is the Euclidean distance.

��������		����	��	��	�������	�1	�	�	�2 =
���
�����
�����(M1�,� − M2�,�)!��

Function CALC_MATRIX_SIMILARITY calculates this distance between any two compatible sets of

correlation matrices and records the results in a table.

Now for answering questions 1g-1i we need to create correlation matrices representing probability

distribution of a class of books, and then to find the distance between our class correlation matrix and a

test correlation matrix. For questions 1g-1i, I ran 4 experiments each answering a part of the questions.

1- Bronte Sisters:

Here is the Euclidean distance matrix between 3 Bronte sisters and Charles Dickens and Mark Twain's

correlation matrices(for 2-Word N-grams). It can clearly be observed that word selection of Bronte sisters'

books are closer to one another and further from other writers books.

7

2- Author Attribution:

First I picked a subset of authors (Carroll, Irving, Twain, Doyle, Bronte & Wells) then created the

combined correlation matrices for each of them, holding out " Warlord of Mars " and "A Connecticut

Yankee ...". Here is the Euclidean distance matrices between these two books and correlation matrix

representing the style of other writers for 3-Character N-gram Analysis:

Note that the asterisk above Mark Twain in the table is indicating that some of his books have been held

out (in this case "A Connecticut Yankee ...") from calculation of combined correlation matrix.

The "Warlord of Mars" has been attributed to H. G. Wells, since we didn't have any other book by its

writer in our test set. Such attribution merely indicates similarity.

The "A Connecticut Yankee" has been attributed to Sir Arthur Conan Doyle, and the actual writer Mark

Twain is the next in line. I can conclude that author attribution is happening but not with the best

precision. To put this idea to test I'll retry this with 2-Word N-grams.

We can see that now Mark Twain is the closest in N-gram distribution to his book "A Connecticut

Yankee ...", so this time N-gram analysis found the right author.

8

3- Genre Attribution:

Since a book might fit into more than one genre, this time, we will use single book to generate correlation

matrices of multiple classes. This can help the process of attribution because it is increasing the number of

examples for each class. At the same time, since now we have different number of books for each genres

the precision of attribution between genres varies depending on the genre. The following are the classes

and book-class mapping I used for this experiment.

FAN: Fantasy, Super Natural, Sci-Fi, Fiction

ROM: Romance

ADV: Adventure

DRM: Drama, Everyday Life, Social Drama

MYST: Mystery, Crime, Detective, Police

 FAN ROM ADV DRM MYST

A Tale of Two Cities x

A Christmas Carroll x

Agnes Grey

Jane Eyre x x

Wuthering Heights

Tarzan of the Apes x x

Warlord of Mars x x

The People that Time Forgot x x

The Land that Time Forgot x x

King Solomon’s Mines x x

Fanny Hill x X

Alice’s Adventures in Wonderland x x

Through the Looking Glass x x

Legend of Sleepy Hollow x

The Adventures of Sherlock
Holmes

 x X x

The Lost World x x

The Hound of the Baskervilles X x

Tales of Terror and Mystery x

Adventures of Huckleberry Finn x

The Adventures of Tom Sawyer x

A Connecticut Yankee ... x

War of the Worlds x x

The Time Machine x x

Metamorphosis x

The Trial x

The Jungle Book x x

9

For this experiment, the books "Through the Looking Glass", The "Jane Eyre" and "Tales of Terror and

Mystery" will be held out to test the attribution. The results are as follows (2-Word N-grams):

The results show that, the most probable genre for "Tales of Terror and Mystery" is MYST which is

correct. For "Jane Eyre" the genre DRM is suggested which is also true, but for the book "Through the

Looking Glass" the genre DRM is suggested where it is actually a FAN/ADV genre.

4- Style Similarity: With the same principals as we had in the last experiments, for 2-Word N-grams, the

following is the list of the authors with the most similarity in style.

Above results show that most similar authors in this set are Charlotte and Emily Bronte.

10

T
h

e
S

im
il

a
ri

ty
 A

n
a
ly

si
s

B
et

w
ee

n
 W

ri
te

s'
 S

ty
le

s

11

Implementation Review

For implementation of the said functionality I chose the Oracle stored procedures language, PLSQL,

which is a declarative language, letting coder to run queries right from the code. The main benefit is that

if the data is defined and indexed properly, a near to C language performance can be achieved. The

performance consideration in my code is highly critical, because I for the web version, I needed file

processing to happen in real time. In the two next parts I'll introduce the data model and the code structure

of the project.

Data Model

Here is the data definition for my project:

1- USERS table

Each row in this table represents a user who can log in and upload files and analyze them. Deleting a user will delete all their
information.

USER_ID (USERS_PK)

USER_NAME Username

USER_PWD User password for logging into system.

VALID_CHARSET The non-repeating string including all characters that will be counted in N-gram analysis.

INVALID_CHARSET A replacement character for any character in corpus that doesn't exist in

P_VALID_CHARSET. P_INVALID_CHAR must exist in P_VALID_CHARSET.

WORD_DELIMITER Word delimiter, mostly used for word N-gram analysis.

NUMBER_REPLACEMENT All numbers will be replaced by this character. P_ NUMBER_REPLACEMENT must
exist in P_VALID_CHARSET.

2- ENGLISH_WORDS table

Each row in this table is a meaningful word, that we user for counting the meaningful words in randomly generated text

WORD Word

3- CORPUS_LIST table

Each row in this table represents a text file, user uploaded .

CORPUS_ID (CORPUS_LIST_PK)

CORPUS_NAME Name of the text document.

CORPUS_TEXT Text file content.

USER_ID The owner of this book in the system (USER_PK)

12

4- FREQUENCY_PROFILE table

Each row in this table holds the meta-data for rows in FREQUENCIES table associated with this row through
FREQUENCY_PROFILE_ID. Rows in FREQUENCY table hold the number of appearances of an N-gram of type =

FREQUENCY_TYPE (word/character) and length=FREQUENCY_N in the text file associated with this profile (through
CORPUS_ID). For example if FREQUENCY_TYPE=word and FREQUENCY_N=2 and CORPUS is book1.text, the rows of
FREQUENCY table indicate the number of time each distinct 2-Word sequence showed up in book1.txt

FREQUENCY_PROFILE_ID (FREQUENCY_PROFILE_PK)

FREQUENCY_TYPE N-gram type (Word/Character)

FREQUENCY_N N-gram length

CORPUS_ID (CORPUS_LIST_PK)

STATUS 'PENDING' indicates that file is not completely processed yet, otherwise 'OK'

TOT_FREQUENCY The total number of N-grams in the corpus

5-FREQUENCIES table

Each row in this table holds the number of appearances of N-gram described in FREQUENCY_PROFILE table in text file
associated with it.

GRAM (FREQUENCY_PROFILE_PK)

FREQUENCY N-gram type (Word/Character)

FREQUENCY_ID Primary Key; (FREQUENCIES_PK)

CUM_SUM Cumulative sum of frequencies of this row's frequency profile, ordered from low
frequency to high frequency.

FREQUENCY_PROFILE_ID (FREQUENCY_PROFILE_PK)

6- MONKEY_TEXT table

Each row in this table contains a text generated randomly according to a frequency distribution (identified by
FREQUENCY_PROFILE_ID)

TEXT_ID Primary Key; (MONKEY_TEXT_PK)

FREQUENCY_PROFILE_ID (FREQUENCY_PROFILE_PK; frequency profile according to which this text was
generated.

TEXT_LENGHT N-gram length

RESOLUTION In case RESOLUTION <> 0, it means that the process of generating file was limited only
to generate high frequency characters. The number RESOLUTION is between 0 and 1
and for example for 0.5 on when 100 distinct possible N-grams, the file was generate only
with the 50 N-grams with highest frequencies;

TEXT File Content

SATUS 'GENERATING TEXT' indicate the file hasn't been created yet, 'GENERATED
PENDING ANALYSIS' means that the find is being analyzed to calculate the number of
meaningful words in it.

TOT_WORD Number of space delimited words in the text.

WORD_YEILD The percentage of the generated text that is meaningful English words.

WORD_LIST A list of longest words crated in the random text

SYSTEM_DT The last date that this row was updates.

13

7- CORRELATION_MATRIX_DEF table

Each row in this table holds the specification of a correlation matrix.

MATRIX_ID Primary Key; (CORRELATION_MATRIX_DEF_PK)

MATRIX_NAME Matrix Name; Can be used to identify the super-class of frequency profiles. (for example
we can use the frequency profiles of a couple of comedy books, and name the super-class
comedy, since this matrix has the average frequency distribution of all its frequency
profiles.

FREQUENCY_TYPE Common N-gram type (word/character) of participating frequency profiles.

FREQUENCY_N Common N-gram length of participating frequency profiles.

STATUS 'PENDING' to indicate that the calculations of creating the correlation matrix are in
progress, otherwise 'OK'

RESOLUTION N/A

USER_ID (USERS_PK); The owner of the matrix.

TOT_FREQUENCY Total number of distinct N-grams in participating frequency profiles.

8- CORRELATION_MATRIX_DATA table

Each row in this table is a cell in a correlation matrix identifier by MATRIX_ID. A correlation matrix is an x*y matrix that holds
the probability of a text started with N-gram1 being followed by N-gram2. Here y is always 1 and x + y = n = FREQUENCY_N.

To fill this table we pick a frequency profile of length n, we break it down to a n-1 word/character N-gram and a 1 word/character
N-gram. (for example if we have a frequency profile of length 3, we use it to create a 2x1correlation matrix, and use the 3-
characer long N-grams frequency as the probability of producing 3rd character after the first and second character is produced)

MATRIX_ID (CORRELATION_MATRIX_DEF_PK)

GRAM1 First N-gram; The rows in the correlation matrix

GRAM2 The second N-gram; 1 word/character long; the columns in the correlation matrix

FREQUENCY Number of appearances of GRAM2 immediately after GRAM1 in this matrix's frequency
profiles.

9- MATRIX_FREQUENCY_PROFILE table

This table represents the many to many relation between frequency profiles and correlation matrices. Our code can combine
multiple frequency profiles into one correlation matrix, creating a super-class frequency distribution of N-grams. Therefore, we
need to be able to show which frequency profiles participated in generation of a specific matrix. Rows of this table record this
information.

MATRIX_ID (CORRELATION_MATRIX_DEF_PK)

FREQUENCY_PROFILE_ID (FREQUENCY_PROFILE_PK)

10 -MATRIX_DESTANCE table

Each row in this table holds both Euclidean distance and inner product of two matrices identified by MATRIX_ID1 and
MATRIX_ID2; Procedure CALC_MATRIX_SIMILARITY makes sure that two matrices are of the same N-gram type and
length.

MATRIX_ID1 (CORRELATION_MATRIX_DEF_PK)

MATRIX_ID2 (CORRELATION_MATRIX_DEF_PK)

EUCLIDEAN_DISTANCE Euclidean Distance

INNER_PRODUCT Inner Product

ALTERNATIVE_DISTANCE N/A

USER_ID The owner of matrix1 and matrix2

14

E
n

ti
ty

 R
el

a
ti

o
n

sh
ip

 M
o
d

el

15

Code Structure & Analysis

This Section contains the code structure of the system, the complete explanation of what each part does

and how and also the time complexity of the routines and functions.

1- USER_LIB (user creation and login)

1-1 Function CHECK_LOGIN

Checks if the provided usrename and password belongs to a user and returns true/false.

Running Time N/A

P_USERNAME (USERS.USER_NAME)

P_PASSWORD (USERS.USER_PWD)

1-2 Procedure CREATE_USER

given a username and password creates a new user. users need to run FREQUENCY_LIB.INIT_FREQUENCIES once after user
creation.

Running Time N/A

P_USERNAME (USERS.USER_NAME)

P_PASSWORD (USERS.USER_PWD)

2- FREQUENCY_LIB (analyzing the frequency of N-gram in a text file)

2-1 Procedure INIT_FREQUENCIES

Deletes all user related data, updates user defined alphabet N-gram analysis then analyzes the calls
CALC_CORPUS_FREQUENCIES to analyze the alphabet itself as a corpus and build a uniformly distributed frequency profile
called NO_CORPUS, which will be used later to generate purely random sequences of characters.

Running Time N/A

P_USER_ID (USERS_PK)

P_VALID_CHARSET The non-repeating string including all characters that will be counted in N-gram analysis.

P_INVALID_CHAR A replacement character for any character in corpus that doesn't exist in
P_VALID_CHARSET. P_INVALID_CHAR must exist in P_VALID_CHARSET.

P_WORD_DELIMITER Word delimiter, mostly used for word N-gram analysis.

P_ NUMBER_REPLACEMENT All numbers will be replaced by this character. P_ NUMBER_REPLACEMENT must

exist in P_VALID_CHARSET.

2-2 Procedure CALC_CORPUS_FREQUENCIES

Records frequency profile descriptions in FREQUENCY_PROFILE_TABLE and calls the appropriate frequency analysis
function to analyze the corpus identified by CORUPS_ID. CORPUS needs to be already uploaded in CORPUS_LIST table.
A frequency profile is a row in FREQUENCY_PROFILE table that associates FREQUENCY_ID with its associate N-gram type
& N-gram length.

Running Time N/A

P_CORPUS_ID (CORPUS_LIST_PK)

P_FREQUENCY_TYPE N-gram type (Word/Character)

P_FREQUENCY_N N-gram length

16

2-3 Procedure CALC_CHAR_FREQUENCIES

For character N-grams of length= FREQUENCY_N=n (associated with P_FREQUENCY_PROFILE_ID in P_FREQUENCY
table) slides a buffer of length n through the CORPUS file and counts the number of occurrences of any distinct sequence of n
characters that show up in the file(from now on referred to as N-gram frequency) and puts the result in FREQUENIES table. it
also calculates the cumulative sum of frequencies order form low frequencies to high frequencies.

Running Time O(n.log(m)) for n=length of corpus of distinct N-grams in FREQUENCIES table

P_FREQUENCY_PROFILE_ID (FREQUENCY_PROFILE_PK)

2-4 Procedure CALC_WORD_FREQUENCIES

Similar to CALC_CHAR_FREQUENCIES but modified to count word N-grams

Running Time The order is the same as CALC_CHAR_FREQUENCIES, but it would take about twice as
much time, because of an extra round of looping through file to split the words.

P_FREQUENCY_PROFILE_ID (FREQUENCY_PROFILE_PK)

2-5 Procedure CLEAN_CORPUS

Replaces all occurrences of invalid characters with invalid character replacement character; Replaces number, too

Running Time N/A

P_USER_ID (USERS_PK)

P_CORPUS_TEXT Text file content

2-6 Procedure DELETE_CORPUS

DELETE_CORPUS deletes a text file and all its related information from all tables. if called with null CORPUS_ID, will delete
all the corpuses for the a user (identified by USER_ID)

Running Time N/A

P_USER_ID (USERS_PK)

P_CORPUS_ID (CORPUS_LIST_PK)

2-7 Procedure DELETE_FREQUENCY_PROFILE

Deletes a frequency profile and all its dependent data from FREQUENCIES and FREQUENCY_PROFILE and
MATRIX_FREQUENCY_PROFILE_TABLE

Running Time N/A

P_USER_ID (USERS_PK)

P_FREQUENCY_PROFILE_ID (FREQUENCY_PROFILE_PK)

2-8 Procedure CALC_CORPUS_FREQUENCIES

Adds a new text file to the CORPUS_LIST

Running Time N/A

P_USER_ID (USERS_PK)

P_CORPUS_NAME Text file name

P_CORPUS_TEXT Text file content

17

3- MONKEY_TEXT_LIB (generating random text and analyzing it with dictionary)

3-1 Procedure GO

Inserts a new row to MONKEY_TEXT table and then calls GENERATE_TEXT to generate a pseudo-random text using the
probability distribution indicated by P_FREQENCY_PROFILE_ID

Running Time N/A

P_FREQENCY_PROFILE_ID (FREQUENCY_PROFILE_PK)

P_LENGTH The non-repeating string including all characters that will be counted in N-gram analysis.

P_RESOLUTION A replacement character for any character in corpus that doesn't exist in
P_VALID_CHARSET. P_INVALID_CHAR must exist in P_VALID_CHARSET.

3-2 Procedure GENERATE_TEXT

Randomly generate a text of length P_LENGTH, with probability of producing each character/word set by the frequency profile.
for example for the uniform frequency profile, probability of all N-grams is the same, but when using frequency profile of a
book1.txt, the probability would equal to frequency of that word/character in book1.text.

Running Time O(m.log(n)) for m = P_LENGTH of text in characters and n = number of distinct N-grams
in frequency profile

P_ TEXT_ID (MONKEY_TEXT_PK)

3-3 Procedure ANALYZE_TEXT

Counts the number of meaningful words in the text generated by GENERATE_TEXT, using words in ENGLISH_WORD table
as a reference.

Running Time O(m.log(n)) for m = the number of words in the text and n = the number of words in the
ENGLISH_WORD table.

P_TEXT_ID (MONKEY_TEXT_PK)

4- CORRELATION_MATRIX_LIB (builds the correlation matrices and calculates the distance between

matrices)

4-1 Procedure BUILD_CORRELATION_MATRIX

This routine creates a new CORRELATION_MATRIX_DEF row to record the meta-data of a new correlation matrix, and

depending on N-gram type (Word/Character) calls the appropriate procedure for populating CORRELATION_MATRIX_DATA

Running Time N/A

P_FREQUENCY_PROFILES the list of frequency distribution profile ids (FREQUENCY_PROFILE_PK)

P_MATRIX_NAME matrix name (CORRELATION_MATRIX_DEF.MATRIX_NAME)

P_FREQUENCY_TYPE N-gram type (Word/Character) (FREQUENCY_PROFILE.FREQUENCY_TYPE)

P_FREQUENCY_N N-gram length; builds a correlation matrix of the size (n-1 * 1)

P_RESOLUTION between 0 and 1; top n frequency N-grams (FREQUECY_PROFILE.RESOLUTION); for
P_RESOLUTION=0.5 on 100 N-grams gets the 50 N-grams with highest frequencies;

P_USER_ID (USERS.USER_ID)

18

4-2 Procedure BUILD_CHAR_CORRELATION_MATRIX

This routine fills CORRELATION_MATRIX_DATA for Character N-grams. For N-gram length of n, combines all frequency
profiles belonging to this MATRIX_ID in MATRIX_FREQUENCY_PROFILE and counts the number of occurrences of each N-
gram with length of n-1 that ends up in a specific character. (for n=2; character N-grams; counts the number of 'aa' that end up 'b'
over all frequency profiles associated with current MATRIX_ID)

Running Time O(n2) for number of frequency observations in FREQUENCIES table.

P_MATRIX_ID (CORRELATION_MATRIX_DEF_PK)

P_USER_ID (USERS_PK)

4-3 Procedure BUILD_WORD_CORRELATION_MATRIX

Same as BUILD_CHAR_CORRELATION_MATRIX, but for Word N-grams

Running Time O(n2) for number of frequency observations in FREQUENCIES table.

P_MATRIX_ID (CORRELATION_MATRIX_DEF_PK)

P_USER_ID (USERS.USER_ID)

4-4 Procedure CALC_MATRIX_SIMILARITY

Calculates the Euclidean distance and inner product of any two matrices in CORRELATION_MATRIX_DEF that have the same

N-gram type and length. The result gets recorded in MATRIX_DISTANCE table.

Running Time O(n) for distinct N-grams in FREQUENCIES table

P_USER_ID (USERS_PK)

4-5 Function MOST_PROBABLE_PATH

Calls appropriate function, depending on N-gram type (word/character) associated with P_MATRIX_ID, to generate sequence of
length P_LENGTH characters using the most frequent N-grams in CORRELATION_MATRIX_DATA. Finally returns the
sequence of words or characters.

Running Time N/A

P_MATRIX_ID (CORRELATION_MATRIX_DEF_PK)

P_START_WITH The first n-1 characters/words of the most probable sequence (for N-gram length of n)

P_LENGTH Maximum length of the word or character sequence to be built (#of characters)

4-6 Function MOST_PROBABLE_CHAR_PATH

Called by _PROBABLE_PATH for character N-grams, starting with P_START_WITH n-1 characters, continuously

looks up the character with highest probability of occurring after the last n-1 characters (Uses every sequence of n
characters only once). For example starting with P_START_WITH = 'ta' for character N-grams of length 3, finds the

character with maximum frequency in CORRELATION_MATRIX_DATA that shows up after 'ta'. Assuming that

said character is 'b', produces sequence 'tab' and repeats the process for 'ab' to reach a sequence of length

P_LENGTH. also makes sure that 'tab' only shows up once in the sequence, to avoid cycles. Finally returns the

sequence of characters.

Running Time O(l.log(m)) for l=P_LENGTH and m=number of distinct n-1 character N-grams for
MATRIX_ID=P_MATRIX_ID

P_MATRIX_ID (CORRELATION_MATRIX_DEF_PK)

P_START_WITH The first n-1 characters of the most probable sequence (for N-gram length of n)

P_LENGTH Maximum length of the character sequence to be built (#of characters)

19

4-7 Function MOST MOST_PROBABLE_WORD_PATH

Same as MOST_PROBABLE_CHAR_PATH for word N-grams

Running Time O(l.log(m)) for l=P_LENGTH and m=number of distinct n-1 word N-grams for
MATRIX_ID=P_MATRIX_ID

P_MATRIX_ID (CORRELATION_MATRIX_DEF_PK)

P_START_WITH The first n-1 words of the most probable sequence (for N-gram length of n)

P_LENGTH Maximum length of the word sequence to be built (#of characters)

4-8 Procedure DELETE_CORRELATION_MATRIX

Deletes a correlation matrix from CORRELATION_MATRIX_DEF, CORRELATION_MATRIX_DATA and correspoding
distance values from MATRIX_DISTANCE ad MATRIX_FREQUENCY_PROFILE

Running Time N/A

P_MATRIX_ID (CORRELATION_MATRIX_DEF_PK)

4-9 Function BUILD_CORRELATION_MATRIX_CSV

Builds and exports a CSV file representation of the correlation matrix and outputs the file.

Running Time O(n2) for number of frequency observations in FREQUENCIES table (O(x.y), x being the
number of distinct n-1 character sequences and y being number all valid characters.

P_MATRIX_ID (CORRELATION_MATRIX_DEF_PK)

P_USER_ID (USERS_PK)

20

Conclusion

This project helped me get a realistic grasp of the abilities and limitations of statistical language

processing. The experiments in the assignment showed that it is possible to use the data of the character

N-grams distribution for classification, however it is not precise and its abilities are very limited. I believe

this kind of analysis can mostly be used as a secondary method limiting the search space or pruning the

results for a more powerful classification algorithm.

However, processing word N-grams statistical data seems to extend the functionality drastically, which

makes it suitable for some practical applications.

.

Web Version

An online version of this project is available at: https://gf93.ntree.com/a/f?p=201

Project Files

The directory accompanying this report, contains the following:

/(Project Root)

 /Source

 /Code/* Quite well-commented PL/SQL packages source code

 /Oracle Schema Setup/nlptest_nodata.dmp

 Exported dump-file the database schema, can be

 imported back to oracle for further and future

 development.

 schema username & password: NLPTEST

 /Oracle Apex App/f201.sql Exported version of the web version, also can be

 imported into Oracle Apex.

 /Report

 /Files/* Supporting files for question 1 parts a, b, c & e

 /Big Assignment Report.docx

 /Big Assignment Report.pdf

