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● Short review in Elementary Probabilities
● Bayes Theorem
● Down falls of Naive Bayes Classifier
● Bayesian belief networks (BBN)
● BBN and Variable Dependence
● BBN Classic Example
● BBN Representation
● BBN Learning
● BBN Creation
● BBN and NLP



  

Introduction
● Bayesian Belief Networks are directed acyclic 

graphs that combine prior knowledge with 
observed data.

● They allow for probabilistic dependencies and 
probabilistic conditional independence

● This makes them more powerful then most 
previous models such as Naive Bayes Model

● These characteristics make it useful for NLP



  

Probabilities Axioms
● A and B are Boolean 

variables that represent the 
occurrence of an event. 

● If an event is certain to occur 
then the probability is 1

● If an event is certain to not 
occur then the probability is 
0.

● If the probability of the event 
is uncertain then the 
probability is between 0 and 
1.

0≤P A≤1
P True =1
P False=0

P  A∨B=P AP B−P  A∧B
P ¬A=1−P A



  

Probabilistic Inference
● Suppose you are one of 

the 1/10 people that 
have a headache (H) 

● Suppose 1/40 of people 
have the flu (F). 

● Suppose that half the 
people that have the flu 
also have a headache. 

● Given the fact that you 
have a headache what 
are the chances that you 
have the flu?

P H =1/10
P F =1 /40

P H∣F =1/2

P F∣H =?



  

Bayes Theorem
● P(h) = prior probability of 

hypothesis h
● P(x) = prior probability 

that examples is 
observed

● P(h|x) = posterior 
probability of h given x

● P(x|h)=conditional 
probability of x given h 
(often called likelihood of 
x given h)

P h∣x=P x∣h Ph
P x

P F∣H =
P H∣F P F 

P H 
=?



  

Bayes Theorem
● P(h) = prior probability of 

hypothesis h
● P(x) = prior probability 

that examples is 
observed

● P(h|x) = posterior 
probability of h given x

● P(x|h)=conditional 
probability of x given h 
(often called likelihood of 
x given h)

P h∣x=P x∣h Ph
P x

P F∣H =
P H∣F P F 

P H 

PF∣H =
0.5∗0.025

0.1
P F∣H =0.125



  

Conditional Probability and The 
Chain Rule

● The probability that A 
and B occur.

● What is the probability 
that a person has a 
head ache and the 
Flu?

P A∣B=
P A∧B
P B

P  A∧B=P A∣BP B

P H∧F =?



  

Conditional Probability and The 
Chain Rule

● The probability that A 
and B occur.

● What is the probability 
that a person has a 
head ache and the 
Flu?

P A∣B=
P A∧B
P B

P  A∧B=P A∣BP B

P H∧F =P H∣F  P F 
PH ∧F =0.5∗0.025

P H∧F =0.0125



  

Joint Probability Distribution
● How can we find these 

probabilities?
Headache Flu Probability

0 0 ?

0 1 ?

1 0 ?

1 1 ?

What we have so far:
P F =0.025 P¬F =0.975

P H =0.1 P¬H =0.9
P H∣F =0.5 P¬H∣F =0.5

P F∣H =0.125 P¬F∣H =0.8875
P H∧F =0.0125



  

Joint Probability Distribution
● We can use Bayes 

Theorem and Chain Rule 
to generate the joint 
probability distribution 
table for headache

Headache Flu Probability

0 0 0.888

0 1 0.125

1 0 0.088

1 1 0.125

We can now find:
P ¬H∧¬F =P ¬H∣¬F  P ¬F =0.909∗0.975=0.886

P¬H∧F =P ¬H∣F  P F =0.5∗0.025=0.0125

P H∧¬F =P H∣¬F P ¬F =P ¬F∣H P H 
P ¬F 

P ¬F 

P H∧¬F =P ¬F∣H  P H =0.8875∗0.1=0.088

What we have so far:
P F =0.025 P¬F =0.975

P H =0.1 P¬H =0.9
P H∣F =0.5 P¬H∣F =0.5

P F∣H =0.125 P¬F∣H =0.8875
P H∧F =0.0125



  

Maximum a Posteriori Hypothesis

● Imagine we need to find the most probable 
hypothesis h from a set of examples. 

● We can find it using a method called Maximum 
a Posteriori Hypothesis.

P h∣x=P x∣h Ph
P x

hMAP  X =argmax
h∈H

P h∣x =argmax
h∈H

P  x∣h P h
P x

=argmax
h∈H

P x∣h P h



  

● Naive Bayes classifier is naive because it 
assumes that values of the attributes are 
conditionally independent given a hypothesis

Naive Bayes Classifier

P x1 , x2 , ... xn∣c j=∏
i

P xi∣c j

cnb=argmax
c j∈C

P c jP  x1 , x2 , ... xn∣c j=argmax
c j∈C

P c j∏
i

P x i∣c j



  

Probability Estimation

Pc j=
# of training examples of class c j

# of training examples 

P x i∣c j=
# of training examples of class c j with xi for Ai
# number of training examples of class c j

● We can estimate the unknown values to cj and 
a xi given cj as follows: 



  

Naive Bayes Algorithm (Learning 
from examples)

For each class c j

P c j−estimate P C j
For each attribute for which x i is a value

P x i∣c j−estimate P  xi∣c j
Classify new instance x

cnb=argmax
c j∈C

P c j∏
i

P x i∣c j



  

A Problem with Naive Bayes 
Classification 

● The assumption that all class attributes are 
independent results in a loss of accuracy
● Recall the example about headaches and flu shown 

before. Clearly there is a dependencies between 
attributes which a naive classifier would not be able 
to model.

● The solution?
● Bayesian Belief Networks



  

Bayesian Belief Networks (BBN)

Image taken from: Data Mining (CSE 6412) Bayesian 
Classification Slide by Aijun Ann



  

Dependence and Independence of 
Bayesian Belief Networks

● In other words BBN 
allow for dependency 
among variables but 
allow independence 
among subsets of 
variables 

● Each variable is 
conditionally 
independent of all its 
non descendant in the 
graph given the value 
of all its parents.

P x1 .. xn=∏
x i∈X

P x i∣parents x i



  

The Classic Example

Burglar (B) Earthquake (E)

Alarm (A)

John Calls (J) Mary Calls (M)

● You go on vacation. You have a new burglar alarm setup that 
detects burglary well but has a chance of responding to 
earthquakes.

● In case the alarm goes your two neighbors John and Mary can 
call you to inform you of the situation. Unfortunately, 

● John has a tendency to confuse the alarm with the phone 
ringing

● Mary is slightly deaf.



  

Classic Example: Chain Rule

P B , E , A , J , M =P BP E∣BP  A∣B , E P J∣A , B , E P M∣J , A , B , E 

● Recall benefits of Bayesian Networks.



  

Classic Example: Chain Rule

P B , E , A , J , M =P BP E∣BP  A∣B , E P J∣A , B , E P M∣J , A , B , E 

● Recall benefits of Bayesian Networks.

P B , E , A , J , M =P BP E P  A∣B , E P J∣A P M∣A



  

Classic Example: Conditional 
Probability Tables (CPT)

● Recall benefits of Bayesian Networks.

B P(B)
T 0.001
F 0.999

B  E A P(A|B,E)
T T T 0.95
T T F 0.05
T F T 0.94
T F F 0.06
F T T 0.29
F T F 0.71
F F T 0.001
F F F 0.999

E P(E)
T 0.002
F 0.998

A J P(J|A)
T T 0.90
T F  0.10
F T  0.05
F F 0.95

A M P(M|A)
T T 0.70
T F  0.30
F T  0.01
F F 0.99



  

Classic Example: Inference
● Lets infer the probability that the burglar is not 

in the house given that John heard the alarm
Calculate P B=F , J =T :

P B=F , J=T = ∑
E , A , M

P B=F , E , A , J =T , M 

P B=F , J=T = ∑
E , A , M

P B=F P E P A∨B=F , E P J=T ∨A P M∨A

P B=F , J =T =P B=F P E=T P  A=T ∨B=F ,E=T P J =T∨A=T P  M=T ∨A=T 
P B=F  P E=T P  A=T∨B=F , E=T  P J =T∨A=T P M=F∨A=T 
P B=F P E=T  P A=F∨B=F , E=T  P J =T∨A=F  P M=T∨A=F 
P B=F P E=T P A=F∨B=F , E=T P J =T∨A=F P M=F∨A=F 
P B=F P E=F P A=T∨B=F , E=F P J =T ∨A=T  P M=T∨A=T 
P B=F P E=F P  A=T∨B=F , E=F P J =T ∨A=T  P M=F∨A=T 
P B=F  P E=F  P A=F∨B=F , E=F P J =T ∨A=F P  M=T ∨A=F 
P B=F  P E=F P A=F∨B=F , E=F  P J=T ∨A=F  P M=F∨A=F 

P B=F , J=T =0.999· 0.002 · 0.29 ·0.9·0.7
0.999 ·0.002· 0.29·0.9 ·0.3

0.999 ·0.002· 0.71· 0.05 ·0.01
0.999 ·0.002· 0.71· 0.05 ·0.99
0.999 ·0.998· 0.001· 0.9 · 0.7
0.999 ·0.998· 0.001· 0.9 · 0.3
0.999 ·0.998· 0.999·0.05 · 0.01
0.999 ·0.998· 0.999·0.05 · 0.99

P B=F , J=T =5.12899587 ·10−2



  

Representational Power of BBN
● BBN can represent other models such as fully 

joint distribution, fully independent model, naive 
bayes model, and HMM model.



  

Learning Bayesian Networks
● If the structure of the Bayesian Network is 

known the simply just learn the CPTs for each 
variable in the network by estimating the 
conditional probabilities from a training set. 
(Similar to naive Bayes classifier)

● What if the structure is unknown?



  

Building Bayesian Networks
● Problem: Find the most probable Bayes network 

structure given a database
● Bayesian Networks can be built using the K2 algorithm
● The algorithm heuristically searches for the most 

probable belief network structure given a dataset of 
cases.

● Input: n number of nodes, an ordering of the nodes, 
and upper bound u on the number of parents a node 
may have, and a data set D containing m cases.

● Output: The set of root parent nodes.
 



  

Building Bayesian Networks
● Structures are ranked by their posterior probabilities 

using the following:

● For more details see:   “A Bayesian Method for the 
Induction of Probabilistic Networks from Data”,  
Gregory F. Cooper and Edward Herskovits, Machine 
Learning 9, 1992

!
)!1(

)!1(),(
11

∏∏
== −+

−=
ii r

k
ijk

q

j iij

i
i N

rN
rig π



  

BBN and NLP
● So how does BBN relate to NLP?

● Word recognition for the English Language (kinda 
like the monkey problem)

● We need a data set (English: books, articles, etc)
● We feed the data set in to the BBN structure creator 

(the structure is already present for us in the words 
it self)

● We the generate the conditional probabilities based 
on the data set.

● But BBN can be even more powerful



  

BBN and NLP continued
● Consider the following paper:

● X. Jin, A. Xu, R. Bie, X. Shen, M. Yin. Spam Email 
Filtering with Bayesian Belief Network: using 
Relevant Words, IEEE International Conference on 
Granular Computing, 2006 

– In the paper the authors attempt to classify 
whether an email is spam or non spam.

– Classification was based on the contents 
of the email itself



  

BBN and NLP continued
● The authors used 3  different criteria for 

relevant word selection
● Information Gain

● Gain Ratio

● Chi Squared



  

BBN and NLP continued
● Using the word selection algorithms the authors 

found a “good” subset of words to use as a 
learning data set

● The authors used BBN classifiers/model  
among others (such as Naive  Bayes Classifier) 
to filter emails as spam and none spam.

● They found that BBN out perform all other 
models for email filtering with a 97.6% 
accuracy.

● The authors attribute this outcome due to BBN 
ability to learn dependencies. 



  

Conclusion
● Bayesian Belief Networks combine prior 

knowledge with observed data
● They allow for both dependencies and 

conditional independencies
● They have a flexible structure and can 

represent other probabilistic models
● These features make them powerful for 

modeling probabilities



  

Questions?
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