Bayesian Networks

BY: MOHAMAD ALSABBAGH

Outlines

- Introduction
- Bayes Rule
- Bayesian Networks (BN) Representation
- Size of a Bayesian Network
- Inference via BN
- BN Learning
- Dynamic BN

Introduction

- Conditional Probability: $P(x \mid y)=\frac{P(x, y)}{P(y)}$
- Product Rule: $\quad P(x, y)=P(x \mid y) P(y)$
- Chain Rule: $\quad P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots$

$$
=\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

- Independence: $\forall x, y: P(x, y)=P(x) P(y)$
- Conditional Independence: $\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)$

Bayes Rule

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

$$
P(\text { Cause } \mid \text { Evidence })=\frac{P(\text { Evidence } \mid \text { Cause }) P(\text { Cause })}{P(\text { Evidence })}
$$

Bayesian Networks (BN) Representation

- A directed, acyclic graph (DAG)
- One node per random variable.
- Each Node is a conditional distribution represented by a conditional probability table (CPT) given its parents.
- BN encodes joint distribution efficiently:
- As a product of local conditional distribution

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Bayesian Networks (BN) Representation

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- $P(b, \neg e, a, m, \neg j)=P(b) * P(\neg e) * P(a \mid b, \neg e) * P(m \mid a) * P(\neg j \mid a)$

$$
=0.001 * 0.998 * 0.94 * 0.7 * 0.1=0.0000656684
$$

- $P(b, \neg e, a, m, j)=0.001 * 0.998 * 0.94 * 0.7 * 0.9=0.0005910156$

Size of a Bayesian Network

- Full joint distribution over N Boolean variables table requires 2^{N} numbers in the table.
- BN with N nodes and up to k parents representation size is $O\left(N^{*} 2^{k}\right)$
- Benefits:
- Provide a huge saving in space
- Easier to calculate local CPTs
- Faster to answer queries
- For $N=11$ and $k=3$

BN size is 88 vs 2048 numbers in CPT

- $N=30$ and $k=5$
- BN requires 960 and full joint distribution requires over billion.

$$
k=3
$$

Inference via BN

- What is Inference?
- Exact Inference in BN:
- Enumeration
- Variable Elimination
- Approximate Inference in BN:
- Sampling

What is Inference?

- Inference: Compute posterior probability distribution for a set of query variables given some observed event.
- Q query variable, E evidence variable
- Examples (Alarm BN):
- $P(b \mid j, m)$ (diagnostic)
- $P(e \mid m)$ (diagnostic)
- P(m|e) (causal)
- $P(a \mid m, b)$ (Mixed)
- P(b|a,e) (inter-causal)

Diagnostic

Causal

(Explaining Away) Intercausal

Mixed

Exact Inference in BN

- Enumeration:
- Summing terms from the full join distribution
- Examples:
- $P(b \mid j, m)=0.284$
- $\mathrm{P}(\mathrm{b} \mid \mathrm{j}, \mathrm{m})=\frac{P(b, j, m)}{P(j, m)}=\alpha P(b, j, m)=\alpha P(b, j, m, A, E)=\alpha \sum_{a} \sum_{e} P(b, j, m, a e)=\alpha * 0.00059224$
- $\mathrm{P}(\neg \mathrm{b} \mid \mathrm{j}, \mathrm{m})=\alpha * 0.0014919$
$\rightarrow \mathrm{P}(\mathrm{b} \mid \mathrm{j}, \mathrm{m})+\mathrm{P}(\neg \mathrm{b} \mid \mathrm{j}, \mathrm{m})=1 \rightarrow \alpha \approx 479.53532$

Exact Inference in BN

- Variable Elimination:
- Improve Enumeration Algorithm by eliminating repeated calculations.
- Store intermediate results.
- Elimination order of hidden variables matters.
- Every variable that is not an ancestor of a query variable or an evidence variable is irrelevant to the query
- Algorithm:
\triangleright Query $=P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or E_{i})
- Pick hidden variable H
- Join all factors mentioning H
- Eliminate (sum out) H
- Join all remaining factors and normalize

Approximate Inference in BN

- Sampling:
- Sampling is a lot like repeated simulation
- Generate N random samples to compute approximate posterior probability.
- Why:
- Getting samples is faster than computing the right answer
- Learning: get samples from a distribution we don't know.

Approximate Inference in BN

- Sampling in BN:
- Prior Sampling
- Each variable is sampled according to the condition distribution given.
- $P\left(x_{1}, \ldots, x_{m}\right)=N_{\text {PS }}\left(x_{1}, \ldots, x_{m}\right) / N$
- Rejection Sampling
- No point keeping all samples around.
- $P(C \mid s)$ same as before but reject samples which don't have $S=s$ (sprinkler evidence)
- Likelihood Weighting:
- Avoids inefficiency from rejecting samples by generating samples that are consistent with the evidence e.

Approximate Inference in BN

- Sampling in BN:
- Markov chain Monte Carlo (Gibbs Sampling):
- Generates each sample from a previous sample by doing a random modification.
- It is conditional on the current values of the variables in the Markov blanket.
- The algorithm wanders randomly around the state space flipping one variable at a time but keeping evidence variable fixed.
- Gibbs Algorithm:
- Fix evidence $\mathrm{R}=\mathrm{r}$ (as an example)
- Initialize other variables randomly
- Repeat on non-evidence variable.

BN Learning

- In practical settings BN is unknown and we need to use data to learn.
- Given training data (prior knowledge), we need to estimate the graph topology (network structure) and the parameters in joint distribution.
- Learning the structure is harder than BN parameters.
- Possible cases of the problem:

Case	BN Structure	Observability	Proposed Learning Method
1	Known	Full	Maximum likelihood estimate
2	Known	Partial	EM (Expectation Maximization) 3
4	MCMC		
4	Unknown	Search through model space	

Dynamic BN

- DBN is a BN that represents a temporal probability.
- In general each time slice of DBN can have any numbers of variables X_{\dagger} and evidence variables.
- Model structure \& parameters don't change overtime.
- Inference:
- Filtering: $P\left(X_{t} \mid e_{1: t}\right)$
- Prediction: $P\left(X_{t+k} \mid e_{1: t}\right) ; k>0$
- Smoothing: $\mathrm{P}\left(\mathrm{X}_{k} \mid \mathrm{e}_{1: t}\right) ; 0 \leq k \leq t$
- Most likely explanation: (given sequence of observation we want to find best states)
- Exactinference
- Variable elimination
- Approximate inference
- Particle filtering (an improvement on Likelihood Weighting)
- MCMC

Dynamic BN

- Special cases of DBN:
- Each HMM is a DBN
- Discrete State Variables
- Used to model sequences of events.
- Single state variable and single evidence variable
- Each DBN can be converted to HMM by combining all state variables to mega variable with all possible cases.
- DBN with 20 Boolean states and 3 parents as max the transition model for it will require only 160 probabilities while corresponding HMM needs 2^{40} or ~trillion in transition model.

Dynamic BN

- Special cases of DBN:
- Every Kalman Filters is a DBN
- Continuous State Variables, with Gaussian Distribution

$$
p(y)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}}
$$

- Gaussian distribution is fully defined by its mean and variance
- Used to model noisy continuous observations
- Example: predict a motion of a bird in a Jungle.
- Not every DBN can be converted to Kalman Filter.
- DBN allow no-linear distribution, that require both discrete and continues variables which Kalman doesn't allow.

Figure 15.7 Bayesian network structure for a linear dynamical system with position X_{t} velocity \mathbf{X}_{t}, and position measurement \mathbf{Z}_{t}.

Dynamic BN Constructing

- Required information
- Prior distributions over state variables $\mathrm{P}\left(\mathrm{X}_{0}\right)$
- The transition model $P\left(X_{t+1} \mid X_{t}\right)$
- The sensor or observation model $P\left(E_{\dagger} \mid X_{f}\right)$

Further resources

- Tools (Belief and Decision Networks)
- http://www.aispace.org/downloads.shtml
- Books:
- Artificial Intelligence A Modern Approach by Russell \& Norvig.

Summary

- BN become extremely popular models.
- BN used in many applications like:
- Machine Learning
- Speech Recognition
- Bioinformatics
- Medical diagnosis
- Weather forecasting
- BN is intuitively appealing and convenient for representation of both causal and probabilistic semantics.

Q\&A

Thank you

