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Infroduction

P(x,
» Conditional Probability: P(z|y) = (,y)
P(y)
» Product Rule: P(z,y) = P($|y)P(y)
» Chain Rule: P(X{,X5,...Xy) = P{:Xl)P(X2|X1)P(X3|X1,X2)

= | P(Xi|X1,..., Xi1)

» Independence: Vax,y: P(xz,y) = P(x)P(y)

» Conditional Independence:

Va,y,z : P(x,y|z) = P(x|z) P(y|z)




Bayes Rule

P(B|A)P(A)
P(B)

P(A|B) =

P(Evidence| Cause)P(Cause) Thomas Bayes

P(Cause| Evidence) = P (Evidence) (1701 - 1761)




Bayesian Networks (BN) Representation

» A directed, acyclic graph (DAG)
» One node perrandom variable.

» Each Node is a conditional distribution represented by a conditional
probability table (CPT) given its parents.

» BN encodes joint distribution efficiently:

» As a product of local conditional distribution

T
P(z1,22,...7n) = || P(zi|parents(X;))
i=1




Bayesian Networks (BN) Representation

B E |PABE)
T T| .5

T F| w

F T| .29

F F

D01

JohnCalls

» Examples:

P{B)

001

P(J|A)

-]

R}
AD5

~ P(E)
Earthquake 002
TL
P(zy,x2,...2p) = || P(xz;|parents(X;))
i=1
A [POMIA)
@m T| .70
S E|l .m

» P(b,—e,a,m,—j) = P(b) * P(me) *P(a|b,—e) * P(m| a) x P(—j|a)

= 0.001 *0.998 x0.94 0.7 *0.1 = 0.0000656684

» P(b,—e,a,m,j)=0.001 x0.998 094 * 0.7 * 0.9 = 0.0005910156




Size of a Bayesian Network

v

Full joint distribution over N Boolean variables table requires 2N numbers in the table.
BN with N nodes and up to k parents representation size is O(N * 2K)
Benefits:

» Provide a huge saving in space

» Easier to calculate local CPTs

» Faster to answer queries \

ForN=11 and k=3

BN size is 88 vs 2048 numbers in CPT /T
N=30and k=25 @)
BN requires 960 and full joint distribution requires over billion.

7T
1

3




Inference via BN

» What is Inference?
» Exact Inference in BN:

» Enumeration

» Variable Eliminafion
» Approximate Inference in BN:

» Sampling



What is Inference@

» Inference: Compute posterior probability distribution for a set of query
variables given some observed event.

» Q query variable, E evidence variable

» Examples (Alarm BN):
b1 (oot OO @\ /® O
P(e | m) (diagnostic) . . @ o
P(m | e) (causal)
P(a | m, b) (Mixed) (Explaining Away)

o o Intercausal o
P(b | a, e) (inter-causal)

Diagnostic Causal Mixed

vV v v Vv



Exact Inference in BN

» Enumeration:

» Summing terms from the full join distribution

» Examples:
» P(b|jm)=0.284

» Pb|jm)= %: aP(b,j,m) = a P(b,j,m AE) =aX,Y,P(bjmae) = ax0.00059224

» P(=b | j, m)=ax*0.0014919
> P(b | ], m)+P(=b | j,m)=1 a~ 479.53532



Exact Inference in BN

» Variable Elimination:

>
>
>
>

Improve Enumeration Algorithm by eliminating repeated calculations.
Store intfermediate results.
Elimination order of hidden variables matters.

Every variable that is not an ancestor of a query variable or an evidence variable is irrelevant to the query

» Algorithm:

>
>
>

Query = P(QlEl = 61?...Ek = Ek)
Local CPTs (but instantiated by evidence)
While there are still hidden variables (not Q or E)

» Pick hidden variable H

» Join all factors mentioning H

» Eliminate (sum out) H

Join all remaining factors and normalize




Approximate Inference in BN

» Sampling:
» Samplingis a loft like repeated simulation
» Generate N random samples to compute approximate posterior probability.
» Why:

» Getting samples is faster than computing the right answer
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» Learning: get samples from a distribution we don't know. /
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Approximate Inference in BN

» Sampling in BN:
» Prior Sampling
» Each variable is sampled according to the condition distribution given.
» P(X;, .... Xpn) = Npg (X, ... Xp) /N
» Rejection Sampling
» No point keeping all samples around.
» P (C|s) same as before but reject samples which don't have S = s (sprinkler evidence)
» Likelihood Weighting:

» Avoids inefficiency from rejecting samples by generating samples that are consistent with the
evidence e.



Approximate Inference in BN

» Sampling in BN:
» Markov chain Monte Carlo (Gibbs Sampling):
» Generates each sample from a previous sample by doing a random modification.
» Itis conditional on the current values of the variables in the Markov blanket.

» The algorithm wanders randomly around the state space flipping one variable at a time but keeping
evidence variable fixed.

» Gibbs Algorithm:
» Fix evidence R=r (as an example)
» Initialize other variables randomly

» Repeat on non-evidence variable.



BN Learning

» In practical settings BN is unknown and we need to use data to learn.

» Given training data (prior knowledge), we need to estimate the graph
topology (network structure) and the parameters in joint distribution.

» Learning the structure is harder than BN parameters.

» Possible cases of the problem:

Case BN Structure Observability Proposed Learning Method

1 Known Full Maximum likelihood estimate

2 Known Partial EM (Expectation Maximization)
MCMC

3 Unknown Full Search through model space

4 Unknown Partial EM + Search through model space




Dynamic BN

» DBNis a BN that represents a temporal probability.
» In general each fime slice of DBN can have any numbers of variables X; and evidence

variables.

» Modelstructure & parameters don't change overtime.

» Inference:

>

vV v Vvy

Filtering: P(X; | e4)
Prediction: P(Xi, | €,4); k>0
Smoothing: P(X | e4); 0 <k <t

Most likely explanation: (given sequence of observation we want to find best states)

Exact inference

» Variable elimination

Approximate inference

>
>

Particle filtering (an improvement on Likelihood Weighting)

MCMC




Dynamic BN

» Special cases of DBN:
» Each HMM is a DBN

» Discrete State Variables
» Used to model sequences of events.
» Single state variable and single evidence variable

» Each DBN can be converted to HMM by combining all state variables to mega
variable with all possible cases.

» DBN with 20 Boolean states and 3 parents as max the fransition model for it will
require only 160 probabilities while corresponding HMM needs 240 or ~trillion in
transition model.



Dynamic BN

» Special cases of DBN:

» Every Kalman Filters is a DBN
. . . o p(y) =
» Continuous State Variables, with Gaussian Distribution o2

» Gaussian distribution is fully defined by its mean and variance

e_ 20

» Used to model noisy continuous observations

B B
i

» Example: predict a motion of a bird in a Jungle. \_x

» Not every DBN can be converted to Kalman Filter.

» DBN allow no-linear distribution, that require both
discrete and continues variables
which Kalman doesn’t allow.

Figure 15.7  Bayesian network structure for a linear dynamical system with position X,
velocity Xy, and position measurement Zy.




Dynamic BN Consfructing

» Required information
» Prior distributions over state variables P(X,)
» The transition model P(X,, | X;)

» The sensor or observation model P(E; | X,)



Further resources

» Tools (Belief and Decision Networks)

» hitp://www.aispace.org/downloads.shiml

» Books:
» Arfificial Intelligence A Modern Approach by Russell & Norvig.


http://www.aispace.org/downloads.shtml

Summary

» BN become exiremely popular models.

» BN usedin many applications like:
» Machine Learning
» Speech Recognition
» Bioinformatics
» Medical diagnosis

» Weather forecasting

» BN is infuitively appealing and convenient for representation of both
causal and probabilistic semantics.



Thank you



