Bayesian Networks

BY: MOHAMAD ALSABBAGH

Outlines

Introduction

- Bayes Rule
- Bayesian Networks (BN) Representation
 - Size of a Bayesian Network
- ► Inference via BN
- ► BN Learning
- Dynamic BN

Introduction

• Conditional Probability:
$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product Rule:
$$P(x,y) = P(x|y)P(y)$$

• Chain Rule:
$$P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$

= $\prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$

Independence: $\forall x, y : P(x, y) = P(x)P(y)$

• Conditional Independence: $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

Bayes Rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

$$P(Cause | Evidence) = \frac{P(Evidence | Cause)P(Cause)}{P(Evidence)}$$

Thomas Bayes (1701 - 1761)

Bayesian Networks (BN) Representation

- A directed, acyclic graph (DAG)
- One node per random variable.
- Each Node is a conditional distribution represented by a conditional probability table (CPT) given its parents.
- BN encodes joint distribution efficiently:
 - As a product of local conditional distribution

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Bayesian Networks (BN) Representation

Size of a Bayesian Network

- ▶ Full joint distribution over N Boolean variables table requires 2^N numbers in the table.
- BN with N nodes and up to k parents representation size is $O(N * 2^{K})$
- Benefits:
 - Provide a huge saving in space
 - Easier to calculate local CPTs
 - Faster to answer queries
- For N = 11 and k = 3 BN size is 88 vs 2048 numbers in CPT
- N = 30 and k = 5
- BN requires 960 and full joint distribution requires over billion.

Inference via BN

- ▶ What is Inference?
- ► Exact Inference in BN:
 - ► Enumeration
 - Variable Elimination
- ► Approximate Inference in BN:
 - Sampling

What is Inference?

- Inference: Compute posterior probability distribution for a set of query variables given some observed event.
- ▶ Q query variable, E evidence variable
- Examples (Alarm BN):
 - P(b | j, m) (diagnostic)
 - ► P(e | m) (diagnostic)
 - P(m | e) (causal)
 - P(a | m, b) (Mixed)
 - P(b | a, e) (inter-causal)

Exact Inference in BN

Enumeration:

- Summing terms from the full join distribution
- ► Examples:
 - ▶ P(b | j, m) = 0.284
 - $P(b \mid j, m) = \frac{P(b, j, m)}{P(j, m)} = \alpha P(b, j, m) = \alpha P(b, j, m, A, E) = \alpha \sum_{a} \sum_{e} P(b, j, m, a e) = \alpha * 0.00059224$
 - ▶ P(¬b | j, m) = α ∗ 0.0014919
 - ► $P(b | j, m) + P(\neg b | j, m) = 1 \rightarrow \alpha \approx 479.53532$

Exact Inference in BN

- Variable Elimination:
 - Improve Enumeration Algorithm by eliminating repeated calculations.
 - Store intermediate results.
 - Elimination order of hidden variables matters.
 - Every variable that is not an ancestor of a query variable or an evidence variable is irrelevant to the query
- Algorithm:
 - Query = $P(Q|E_1 = e_1, \dots E_k = e_k)$
 - Local CPTs (but instantiated by evidence)
 - While there are still hidden variables (not Q or E_i)
 - Pick hidden variable H
 - ► Join all factors mentioning H
 - Eliminate (sum out) H
 - Join all remaining factors and normalize

Approximate Inference in BN

Sampling:

- Sampling is a lot like repeated simulation
- Generate N random samples to compute approximate posterior probability.
- Why:
 - Getting samples is faster than computing the right answer
 - Learning: get samples from a distribution we don't know.

Approximate Inference in BN

- Sampling in BN:
 - Prior Sampling
 - Each variable is sampled according to the condition distribution given.
 - ► $P(x_1, ..., x_m) = N_{PS}(x_1, ..., x_m)/N$
 - Rejection Sampling
 - ▶ No point keeping all samples around.
 - P (C | s) same as before but reject samples which don't have S = s (sprinkler evidence)
 - Likelihood Weighting:
 - Avoids inefficiency from rejecting samples by generating samples that are consistent with the evidence e.

Approximate Inference in BN

Sampling in BN:

- Markov chain Monte Carlo (Gibbs Sampling):
 - ▶ Generates each sample from a previous sample by doing a random modification.
 - ▶ It is conditional on the current values of the variables in the Markov blanket.
 - The algorithm wanders randomly around the state space flipping one variable at a time but keeping evidence variable fixed.
- Gibbs Algorithm:
 - Fix evidence R= r (as an example)
 - Initialize other variables randomly
 - ▶ Repeat on non-evidence variable.

BN Learning

- ▶ In practical settings BN is unknown and we need to use data to learn.
- Given training data (prior knowledge), we need to estimate the graph topology (network structure) and the parameters in joint distribution.
- Learning the structure is harder than BN parameters.

Possible cases of the problem:

Case	BN Structure	Observability	Proposed Learning Method
1	Known	Full	Maximum likelihood estimate
2	Known	Partial	EM (Expectation Maximization) MCMC
3	Unknown	Full	Search through model space
4	Unknown	Partial	EM + Search through model space

Dynamic BN

- ▶ DBN is a BN that represents a temporal probability.
- In general each time slice of DBN can have any numbers of variables X_t and evidence variables.
- Model structure & parameters don't change overtime.
- Inference:
 - Filtering: $P(X_t | e_{1:t})$
 - Prediction: $P(X_{t+k} | e_{1:t}); k > 0$
 - Smoothing: $P(X_k | e_{1:t}); 0 \le k \le t$
 - Most likely explanation: (given sequence of observation we want to find best states)
 - Exact inference
 - Variable elimination
 - Approximate inference
 - Particle filtering (an improvement on Likelihood Weighting)
 - ► MCMC

Dynamic BN

Special cases of DBN:

- Each HMM is a DBN
 - Discrete State Variables
 - ▶ Used to model sequences of events.
 - ► Single state variable and single evidence variable
- Each DBN can be converted to HMM by combining all state variables to mega variable with all possible cases.
- DBN with 20 Boolean states and 3 parents as max the transition model for it will require only 160 probabilities while corresponding HMM needs 2⁴⁰ or ~trillion in transition model.

Dynamic BN

- Special cases of DBN:
 - Every Kalman Filters is a DBN
 - Continuous State Variables, with Gaussian Distribution
 - Gaussian distribution is fully defined by its mean and variance
 - Used to model noisy continuous observations
 - Example: predict a motion of a bird in a Jungle.
 - ▶ Not every DBN can be converted to Kalman Filter.
 - DBN allow no-linear distribution, that require both discrete and continues variables which Kalman doesn't allow.

Figure 15.7 Bayesian network structure for a linear dynamical system with position X_t , velocity \dot{X}_t , and position measurement Z_t .

Dynamic BN Constructing

Required information

- > Prior distributions over state variables $P(X_0)$
- The transition model $P(X_{t+1} | X_t)$
- The sensor or observation model $P(E_t | X_t)$

Further resources

Tools (Belief and Decision Networks)

- http://www.aispace.org/downloads.shtml
- Books:
 - Artificial Intelligence A Modern Approach by Russell & Norvig.

Summary

- BN become extremely popular models.
- BN used in many applications like:
 - Machine Learning
 - Speech Recognition
 - Bioinformatics
 - Medical diagnosis
 - Weather forecasting
- BN is intuitively appealing and convenient for representation of both causal and probabilistic semantics.

Thank you