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Introduction

 Conditional Probability: 

 Product Rule:

 Chain Rule: 

 Independence:

 Conditional Independence: 
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Bayesian Networks (BN) Representation

 A directed, acyclic graph (DAG)

 One node per random variable. 

 Each Node is a conditional distribution represented by a conditional 

probability table (CPT) given its parents.

 BN encodes joint distribution efficiently:

 As a product of local conditional distribution



Bayesian Networks (BN) Representation

 Examples: 

 𝑃 𝑏,¬𝑒, 𝑎,𝑚,¬𝑗 = 𝑃 𝑏 ∗ 𝑃 ¬𝑒 ∗ 𝑃 𝑎 𝑏,¬𝑒) ∗ 𝑃(𝑚 𝑎 ∗ 𝑃 ¬𝑗 𝑎
= 0.001 ∗ 0.998 ∗ 0.94 ∗ 0.7 ∗ 0.1 = 0.0000656684

 𝑃 𝑏,¬𝑒, 𝑎,𝑚, 𝑗 = 0.001 ∗ 0.998 ∗ 0.94 ∗ 0.7 ∗ 0.9 = 0.0005910156



 Full joint distribution over N Boolean variables table requires 2N numbers in the table.

 BN with N nodes and up to k parents representation size is O(N * 2K)

 Benefits:

 Provide a huge saving in space

 Easier to calculate local CPTs

 Faster to answer queries

 For N = 11 and k = 3
BN size is 88 vs 2048 numbers in CPT

 N = 30 and k = 5

 BN requires 960 and full joint distribution requires over billion.

Size of a Bayesian Network

k = 3



Inference via BN

 What is Inference?

 Exact Inference in BN:

 Enumeration

 Variable Elimination 

 Approximate Inference in BN: 

 Sampling 



What is Inference?

 Inference: Compute posterior probability distribution for a set of query 

variables given some observed event.

 Q query variable, E evidence variable

 Examples (Alarm BN):

 P(b | j, m) (diagnostic)

 P(e | m) (diagnostic)

 P(m | e) (causal)

 P(a | m, b) (Mixed)

 P(b | a, e) (inter-causal)



Exact Inference in BN

 Enumeration:

 Summing terms from the full join distribution

 Examples:

 P(b | j, m) = 0.284

 P(b | j, m) =
𝑃 𝑏,𝑗,𝑚

𝑃(𝑗,𝑚)
= α 𝑃 𝑏, 𝑗,𝑚 = α 𝑃 𝑏, 𝑗,𝑚, 𝐴, 𝐸 = α  𝑎 𝑒 𝑃 𝑏, 𝑗,𝑚, 𝑎 𝑒 = α ∗ 0.00059224

 P(¬b | j, m) = α ∗ 0.0014919

 P(b | j, m)+P(¬b | j, m) = 1  α ≈ 479.53532



Exact Inference in BN

 Variable Elimination:

 Improve Enumeration Algorithm by eliminating repeated calculations.

 Store intermediate results.

 Elimination order of hidden variables matters.

 Every variable that is not an ancestor of a query variable or an evidence variable is irrelevant to the query

 Algorithm: 

 Query = 

 Local CPTs (but instantiated by evidence)

 While there are still hidden variables (not Q or Ei)

 Pick hidden variable H

 Join all factors mentioning H

 Eliminate (sum out) H

 Join all remaining factors and normalize



Approximate Inference in BN

 Sampling:

 Sampling is a lot like repeated simulation

 Generate N random samples to compute approximate posterior probability.

 Why:

 Getting samples is faster than computing the right answer.

 Learning: get samples from a distribution we don't know.



Approximate Inference in BN

 Sampling in BN:

 Prior Sampling 

 Each variable is sampled according to the condition distribution given.

 P(x1, …. ,xm) = NPS (x1, …. ,xm)/N

 Rejection Sampling

 No point keeping all samples around.

 P (C|s) same as before but reject samples which don’t have S = s (sprinkler evidence)

 Likelihood Weighting:

 Avoids inefficiency from rejecting samples by generating samples that are consistent with the 
evidence e. 



Approximate Inference in BN

 Sampling in BN:

 Markov chain Monte Carlo (Gibbs Sampling):

 Generates each sample from a previous sample by doing a random modification.

 It is conditional on the current values of the variables in the Markov blanket.

 The algorithm wanders randomly around the state space flipping one variable at a time but keeping 
evidence variable fixed.

 Gibbs Algorithm:

 Fix evidence R= r (as an example)

 Initialize other variables randomly

 Repeat on non-evidence variable. 



BN Learning

 In practical settings BN is unknown and we need to use data to learn.

 Given training data (prior knowledge), we need to estimate the graph 

topology (network structure) and the parameters in joint distribution. 

 Learning the structure is harder than BN parameters. 

 Possible cases of the problem:

Case BN Structure Observability Proposed Learning Method

1 Known Full Maximum likelihood estimate

2 Known Partial EM (Expectation Maximization)
MCMC

3 Unknown Full Search through model space

4 Unknown Partial EM + Search through model space



Dynamic BN

 DBN is a BN that represents a temporal probability.

 In general each time slice of DBN can have any numbers of variables Xt and evidence 
variables. 

 Model structure & parameters don’t change overtime. 

 Inference:

 Filtering: P(Xt|e1:t)

 Prediction: P(Xt+k|e1:t); k > 0

 Smoothing: P(Xk|e1:t); 0 ≤ 𝑘 ≤ 𝑡

 Most likely explanation: (given sequence of observation we want to find best states) 

 Exact inference

 Variable elimination

 Approximate inference

 Particle filtering (an improvement on Likelihood Weighting)

 MCMC



Dynamic BN

 Special cases of DBN:

 Each HMM is a DBN

 Discrete State Variables

 Used to model sequences of events. 

 Single state variable and single evidence variable

 Each DBN can be converted to HMM by combining all state variables to mega 

variable with all possible cases.

 DBN with 20 Boolean states and 3 parents as max the transition model for it will 

require only 160 probabilities while corresponding HMM needs 240 or ~trillion in 

transition model.



Dynamic BN

 Special cases of DBN:

 Every Kalman Filters is a DBN

 Continuous State Variables, with Gaussian Distribution

 Gaussian distribution is fully defined by its mean and variance

 Used to model noisy continuous observations

 Example: predict a motion of a bird in a Jungle.

 Not every DBN can be converted to Kalman Filter.

 DBN allow no-linear distribution, that require both
discrete and continues variables 
which Kalman doesn’t allow. 
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Dynamic BN Constructing

 Required information

 Prior distributions over state variables P(X0)

 The transition model P(Xt+1|Xt)

 The sensor or observation model P(Et |Xt)



Further resources

 Tools (Belief and Decision Networks)

 http://www.aispace.org/downloads.shtml

 Books:

 Artificial Intelligence A Modern Approach by Russell & Norvig.

http://www.aispace.org/downloads.shtml


Summary

 BN become extremely popular models.

 BN used in many applications like:

 Machine Learning

 Speech Recognition

 Bioinformatics 

 Medical diagnosis 

 Weather forecasting

 BN is intuitively appealing and convenient for representation of both 

causal and probabilistic semantics. 



Q&A

Thank you


