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Introduction

 Conditional Probability: 

 Product Rule:

 Chain Rule: 

 Independence:

 Conditional Independence: 
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Bayesian Networks (BN) Representation

 A directed, acyclic graph (DAG)

 One node per random variable. 

 Each Node is a conditional distribution represented by a conditional 

probability table (CPT) given its parents.

 BN encodes joint distribution efficiently:

 As a product of local conditional distribution



Bayesian Networks (BN) Representation

 Examples: 

 𝑃 𝑏,¬𝑒, 𝑎,𝑚,¬𝑗 = 𝑃 𝑏 ∗ 𝑃 ¬𝑒 ∗ 𝑃 𝑎 𝑏,¬𝑒) ∗ 𝑃(𝑚 𝑎 ∗ 𝑃 ¬𝑗 𝑎
= 0.001 ∗ 0.998 ∗ 0.94 ∗ 0.7 ∗ 0.1 = 0.0000656684

 𝑃 𝑏,¬𝑒, 𝑎,𝑚, 𝑗 = 0.001 ∗ 0.998 ∗ 0.94 ∗ 0.7 ∗ 0.9 = 0.0005910156



 Full joint distribution over N Boolean variables table requires 2N numbers in the table.

 BN with N nodes and up to k parents representation size is O(N * 2K)

 Benefits:

 Provide a huge saving in space

 Easier to calculate local CPTs

 Faster to answer queries

 For N = 11 and k = 3
BN size is 88 vs 2048 numbers in CPT

 N = 30 and k = 5

 BN requires 960 and full joint distribution requires over billion.

Size of a Bayesian Network

k = 3



Inference via BN

 What is Inference?

 Exact Inference in BN:

 Enumeration

 Variable Elimination 

 Approximate Inference in BN: 

 Sampling 



What is Inference?

 Inference: Compute posterior probability distribution for a set of query 

variables given some observed event.

 Q query variable, E evidence variable

 Examples (Alarm BN):

 P(b | j, m) (diagnostic)

 P(e | m) (diagnostic)

 P(m | e) (causal)

 P(a | m, b) (Mixed)

 P(b | a, e) (inter-causal)



Exact Inference in BN

 Enumeration:

 Summing terms from the full join distribution

 Examples:

 P(b | j, m) = 0.284

 P(b | j, m) =
𝑃 𝑏,𝑗,𝑚

𝑃(𝑗,𝑚)
= α 𝑃 𝑏, 𝑗,𝑚 = α 𝑃 𝑏, 𝑗,𝑚, 𝐴, 𝐸 = α  𝑎 𝑒 𝑃 𝑏, 𝑗,𝑚, 𝑎 𝑒 = α ∗ 0.00059224

 P(¬b | j, m) = α ∗ 0.0014919

 P(b | j, m)+P(¬b | j, m) = 1  α ≈ 479.53532



Exact Inference in BN

 Variable Elimination:

 Improve Enumeration Algorithm by eliminating repeated calculations.

 Store intermediate results.

 Elimination order of hidden variables matters.

 Every variable that is not an ancestor of a query variable or an evidence variable is irrelevant to the query

 Algorithm: 

 Query = 

 Local CPTs (but instantiated by evidence)

 While there are still hidden variables (not Q or Ei)

 Pick hidden variable H

 Join all factors mentioning H

 Eliminate (sum out) H

 Join all remaining factors and normalize



Approximate Inference in BN

 Sampling:

 Sampling is a lot like repeated simulation

 Generate N random samples to compute approximate posterior probability.

 Why:

 Getting samples is faster than computing the right answer.

 Learning: get samples from a distribution we don't know.



Approximate Inference in BN

 Sampling in BN:

 Prior Sampling 

 Each variable is sampled according to the condition distribution given.

 P(x1, …. ,xm) = NPS (x1, …. ,xm)/N

 Rejection Sampling

 No point keeping all samples around.

 P (C|s) same as before but reject samples which don’t have S = s (sprinkler evidence)

 Likelihood Weighting:

 Avoids inefficiency from rejecting samples by generating samples that are consistent with the 
evidence e. 



Approximate Inference in BN

 Sampling in BN:

 Markov chain Monte Carlo (Gibbs Sampling):

 Generates each sample from a previous sample by doing a random modification.

 It is conditional on the current values of the variables in the Markov blanket.

 The algorithm wanders randomly around the state space flipping one variable at a time but keeping 
evidence variable fixed.

 Gibbs Algorithm:

 Fix evidence R= r (as an example)

 Initialize other variables randomly

 Repeat on non-evidence variable. 



BN Learning

 In practical settings BN is unknown and we need to use data to learn.

 Given training data (prior knowledge), we need to estimate the graph 

topology (network structure) and the parameters in joint distribution. 

 Learning the structure is harder than BN parameters. 

 Possible cases of the problem:

Case BN Structure Observability Proposed Learning Method

1 Known Full Maximum likelihood estimate

2 Known Partial EM (Expectation Maximization)
MCMC

3 Unknown Full Search through model space

4 Unknown Partial EM + Search through model space



Dynamic BN

 DBN is a BN that represents a temporal probability.

 In general each time slice of DBN can have any numbers of variables Xt and evidence 
variables. 

 Model structure & parameters don’t change overtime. 

 Inference:

 Filtering: P(Xt|e1:t)

 Prediction: P(Xt+k|e1:t); k > 0

 Smoothing: P(Xk|e1:t); 0 ≤ 𝑘 ≤ 𝑡

 Most likely explanation: (given sequence of observation we want to find best states) 

 Exact inference

 Variable elimination

 Approximate inference

 Particle filtering (an improvement on Likelihood Weighting)

 MCMC



Dynamic BN

 Special cases of DBN:

 Each HMM is a DBN

 Discrete State Variables

 Used to model sequences of events. 

 Single state variable and single evidence variable

 Each DBN can be converted to HMM by combining all state variables to mega 

variable with all possible cases.

 DBN with 20 Boolean states and 3 parents as max the transition model for it will 

require only 160 probabilities while corresponding HMM needs 240 or ~trillion in 

transition model.



Dynamic BN

 Special cases of DBN:

 Every Kalman Filters is a DBN

 Continuous State Variables, with Gaussian Distribution

 Gaussian distribution is fully defined by its mean and variance

 Used to model noisy continuous observations

 Example: predict a motion of a bird in a Jungle.

 Not every DBN can be converted to Kalman Filter.

 DBN allow no-linear distribution, that require both
discrete and continues variables 
which Kalman doesn’t allow. 
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Dynamic BN Constructing

 Required information

 Prior distributions over state variables P(X0)

 The transition model P(Xt+1|Xt)

 The sensor or observation model P(Et |Xt)



Further resources

 Tools (Belief and Decision Networks)

 http://www.aispace.org/downloads.shtml

 Books:

 Artificial Intelligence A Modern Approach by Russell & Norvig.

http://www.aispace.org/downloads.shtml


Summary

 BN become extremely popular models.

 BN used in many applications like:

 Machine Learning

 Speech Recognition

 Bioinformatics 

 Medical diagnosis 

 Weather forecasting

 BN is intuitively appealing and convenient for representation of both 

causal and probabilistic semantics. 



Q&A

Thank you


