

CSE 6390E Computational Linguistics Project

Winter 2010

―CL Book‖

Dmitri Shuryalov

shuryork@cse.yorku.ca

Ameeta Agrawal

 ameeta@cse.yorku.ca

2

Table of Contents
1. Introduction ... 3

1.1 Motivation ... 3

1.2 Challenges .. 3

1.3 Outline of the report ... 3

2. System .. 4

2.1 English Grammar ... 4

2.2 Translating from English to other languages .. 4

2.3 Implementation ... 5

3. Examples of Output ... 7

4. Conclusion and Future Work ... 16

5. System Manual ... 17

5.1 Deployment ... 17

5.2 Functionality ... 18

6. References ... 21

7. Appendix ... 21

7.1. The Penn Treebank POS tagset ... 21

7.2 CL Lessons.txt ... 22

3

1. Introduction

Ever tried learning a foreign language? Have you noticed how the books you could read were often

boring? And were the books you wanted to read just that bit too hard to understand? Did you wish for

a quick translation of a complex passage? Or wished there was a quick way to learn English for
beginners?

With paper books, you‘re pretty much stuck. But e-books—with the right combination of software and
open formats—can help keep you reading and learning in the new language.

In this project we designed a system that helps as English grammar learning software for beginners as
well as translation software for ebooks.

1.1 Motivation

Grammar learning through real examples – Most of the texts provided for learning grammar are boring

and feel artificial. How about being able to choose your own text and have the reader software

automatically highlight the structures you are learning this week, whether it is proper nouns, present

perfect constructions or conjugations of the irregular verb ‗to be‘? With the material being presented

completely in context, the rules will be easier to understand and recall. And even if you are rereading

the last week‘s passage, you are learning something new, as the highlighted parts will change.

Parallel texts – Intermediate and advanced readers appreciate being able to read original text, while

still having a good translation available a glance away.

Paper books like this do exist, but just a few, due to a high cost of production and distributed target

market. For e-books, the ever decreasing price of the storage makes the size of the download

irrelevant – slashing the cost of physical production. And with electronic distribution, the market reach
is as wide as the internet itself.

1.2 Challenges

In this project, we use free available Stanford POS tagger library and Google Translate library for some

processing. This means the accuracy of the results of our program is dependent on the accuracy of the

libraries we use. However, with Stanford POS tagger‘s 96.92% accuracy and Google translate‘s pretty

high accuracy, our program gives good results overall.

1.3 Outline of the report

The report starts by describing the system and the implementation details in section 2. It covers the

data structures and the algorithms used. It also describes in detail the Grammar learning and the

Translation parts of the program. Section 3 includes sample output of the program with brief

descriptions. Section 4 contains the concluding remarks and ideas about future work. Section 5 outlines
the System Manual and section 6 annotates the references. Lastly, section 7 contains an appendix.

4

2. System

Our system CL Book has two major components: English Grammar Learning and Translating. We
examine each component below.

2.1 English Grammar

The program provides several English grammar topics for beginners. These have been adapted from a

level 1 English grammar topics [3][4]. The lessons include Adjectives, Adverbs, Determiners, Nouns,
Pronouns, Passive Voice, Possessive, Conjunction and Verbs.

This part of the program can be broken down into steps such as:

 Preprocessing text

o Removing Newline Characters from Paragraphs as explained in section Algorithms.

 Using MaxentTagger from Stanford POS Tagger API

o Stanford POS Tagger: A Part-Of-Speech Tagger (POS Tagger) is a piece of software that

reads text in some language and assigns parts of speech to each word (and other token),

such as noun, verb, adjective, etc., although generally computational applications use

more fine-grained POS tags like 'noun-plural'. Stanford POS Tagger software is a Java

implementation of the log-linear part-of-speech taggers described in [1] and [2]. The tag

notation is taken from the Penn Tree Bank POS tagset described in [5], table 2 ,page

317. Refer Appendix POS tagset.

o We use the already trained left3words-wsj-0-18.tagger model for tagging. This model

uses only left sequence information but less unknown words and lexical features. Its

accuracy was 96.92% on Penn Treebank WSJ secs [1][2].

o The input to the tagger is a simple String e.g. I wonder if I shall fall right through the

earth!

o The output tagged text can be produced in several styles. The tags can be separated

from the words by a character, which you can specify (this is the default, with an

underscore as the separator), or you can get two tab-separated columns (good for

spreadsheets or the Unix cut command), or you can get ouptput in XML. We use the

format <word_POStag> e.g. I_PRP wonder_VBP if_IN I_PRP shall_MD fall_VB right_JJ

through_IN the_DT earth_NN !_.

 Processing the tagged output for each lesson topic

o We separate the word and the tag by tokenizing the String using the underscore

delimiter.

o Then we find the start and last index of the word in the entire String. This will be used

later when highlighting the text in the reader.
o The indices and the tag are then stored in a Map.

2.2 Translating from English to other languages

The program provides translation facility by tapping into the Google Translate API. The text can be

translated from English to any language that is supported by Google Translate e.g. Arabic, Chinese,

French, German, Hindi, Italian, Persian, Polish, Russian, Belarusian, Serbian, Thai and Swahili to name
a few.

5

2.3 Implementation

2.3.1 System Requirements

 Java 1.6+

 120+ MB of RAM
 Internet connection to the Google Translate server for translating

2.3.2 Data Structures

We have used a small number of Data Structures in our implementation of CL Book. They are used for
tasks, such as:

1. Keeping the Loaded Book in Memory

o When a book is loaded, we need to break it up into pages. The source ebook file is a

plain text file, with newline characters at the end of each line. We take 24 lines of text

and combine them into one book page. We store each book page as a String, and a

Vector of Strings contains all the book pages.

2. Word Tagging Data for Current Page

o The output from the tagger is a String of words and their tags. This is tokenized to

retrieve the first and last index of each word as it appears in the original text. This first

and last index pair is called a Tuple. Finally, a Map of type <Tuple,String> is used to

save the results. This makes it easier when we need to highlight the words in the display.

Furthermore, two arrays are used: one of type Tuple and the other of type String. These

save the Tuples and tags respectively. This is needed when we check the tags of the

previous or next few words for computing dependency between words as in the lesson

"Passive Voice".

2.3.3 Algorithms

 There are various algorithms used throughout CL Book project.

1. Loading Book to Memory

o To load a book, which is given in a plain text format, we read the file one line at a time.

Every 24 lines are concatenated into a page, and the page is added to a Vector of Strings

containing all the pages.

2. Removing Newline Characters from Paragraphs

o After a book is loaded, each page consists of 24 lines of text. There are newline

characters within paragraphs. For multiple reasons, we must remove those newline

characters before further analysis of the text. To do so, an algorithm is employed. It

looks through each line of text, and adds it to the current block. When it sees that the

next line is blank, it knows the current paragraph is over, so it finishes the current block

and starts a new one.

3. Processing Text with POS tagger

o For each entry in the Map, we check the value i.e. the POS tag. Depending on what

lesson the user has selected, we create a list of Tuples (start and end indices of words to

highlight) that correspond to the selected lesson. For e.g. if the user selects the lesson

"proper nouns", then all proper nouns will be highlighted in the text currently displayed

6

on the screen. For general part of speech such as nouns, verbs, pronouns, the tagger's

tags are pretty straightforward. For more complex lessons such as comparative

adjectives, comparative adverbs, passive voice, possession, we need to take into account

the neighbouring words' dependencies.

o In a phrase such as "more beautiful", the tagger tags "more" as JJR (syntax for

comparative adjective) and "beautiful" as JJ (syntax for adjective). So when we would

like to display all the examples containing "comparative adjectives", we need to highlight

not only "more" which the tagger tagged correctly, but also "beautiful". In order to do

that, we need to check whether the next tag after JJR is JJ. Similary we can compute

comparative adverbs.

o For passive voice, we first look for a tag VBN which stands for past participle form of a

verb. Then we check if the preceding word is either VBG (gerund form) or VBZ (third

person singular present) or VBD (past tense) of verb "TO". If yes, then the phrase can be

classified as passive voice structure.

4. Adding Newline Characters to Balloon Tooltips

o When displaying Balloon Tooltips, HTML is used to specify the font face, size, as well as

the newlines. Without line breaks, the entire tooltip ends up being too long and doesn't

fit on the screen. However, the source text for a tooltip comes with no newline

characters (because they've already been removed earlier). So an algorithm is used to

recreate these newline breaks, by adding the
 HTML tag at appropriate locations. It

scans through the source text one character at a time, and when it counts 80 characters

within the same paragraph, it adds a
 tag. It repeats this process until the entire

source text is converted.

5. Translate with Preserved Formatting

o Unfortunately, our translator service drops any formatting in the source text when

returning the translated result. Thus, an algorithm that counteracts this had to be

created. Otherwise, all paragraphs merged into one, without any line breaks in between,

which was unacceptable. In order to solve this, an algorithm similar to the "Removing

Newline Characters from Paragraphs", but with some intermediate steps added. It begins

by breaking up the text into blocks. Next, it translates each block separately, one by

one. Afterwards, it reassembles all the translated paragraphs into one final combined

result.

2.3.4 Resources/Files

Lessons Description File

We have used a custom file format to describe all of our grammar lessons that you find available within
CL Book. The file is named "CL Lessons.txt" and resides in the root folder of the CL Book project.

The format of this file is as follows. For each lesson, the first line of text is the lesson name (e.g.

"Lesson 1: Adjectives"). The second line of text is the internal id of the lesson (e.g. "adjective"). The
following lines of text, up until a blank line, is the HTML description of the lesson.

This is a better solution than hard-coding all that information due to the extra flexibility it affords. It

has allowed us to continue adding lessons, and modifying their description without having to edit code,
working outside of the Java project. Refer Appendix CL Lessons.txt.

7

2.3.5 Alternative implementation ideas

We preferred using Java language since the two libraries (Stanford POS tagger and Google translate)

that we're using have Java APIs. But an alternative would be to use C++ and OpenGL for better visual

rendering. Moreover, currently the program may use upto 100 MB of memory. Coding in C++ might
make it use less memory.

As for the algorithms, we would have liked to design a better idea for processing tagged String.

Currently, we check each tag and its neighbouring words' tags individually by looping over them and

using AND and OR conditions. However, we would like to improve it by using an idea where you could

search for a tag in some given range of a word. For e.g. if a word is tagged as a "past participle", you'd

like to know the tags of the previous and the next three to five words. A possible data structure could

be a multi-map.

3. Examples of Output

Figure 1. Blank Canvas

This is what the CL Book reader program looks like upon launching. You are presented with a big
window, but no book is opened yet.

8

Figure 2. File Menu

The file menu. It allows the user to Open, Close a book, as well as to Exit the application.

Figure 3. Mode Menu

There are three modes of operation altogether in CL Book: Reading Mode, Grammar Mode, and

Translation Mode. This menu allows you switch between them.

9

Figure 4. Open Book Dialog

This is the Open book dialog. It is accessible by pressing Ctrl+O or by going under the File menu, and

selecting Open. You can choose the book of your choice, in a *.txt plain text file format.

Figure 5. Sample Book Opened (Reading Mode)

This is the default view after opening a book. The mode visible here is the Reading Mode, and it acts

most similarly to any standard eBook reader. It displays two pages of the book at a time, and allows
the user to read the book as is, without any guides or augmentations.

10

Figure 6. Go To Page Dialog

To complete the eBook reading experience, there are buttons to go to the beginning or the end of the

book. There are buttons to go to the previous and next page. There is also a button to go to a specific

page, as shown here. Upon clicking, it prompts the user for the page number he or she wishes to jump
directly to.

Figure 7. Grammar Mode, Nouns Lesson

The Grammar Mode brings in a sidebar with a list of lessons on the right. There are a number of

grammar lessons that help the user identify examples of said lessons within the text they are currently

reading. In this screenshot, the Nouns lesson is active, and it highlights the occurrences of nouns.

11

Figure 8. Grammar Mode, Verbs Lesson

The Verbs lesson highlights the occurrences of verbs.

Figure 9. Grammar Mode, Adjectives Lesson

The Adjectives lesson highlights the occurrences of adjectives.

12

Figure 10. Grammar Mode, Adverbs Lesson

The Adverbs lesson highlights the occurrences of adverbs.

Figure 11. Grammar Mode, Plural Nouns Lesson

This is an example of a sub-lesson, which further expands on a given topic. In the Plural Nouns lesson,

only the plural nouns are highlighted.

13

Figure 12. Grammar Mode, Proper Nouns (Singular) Lesson

In the Proper Nouns (Singular) lessons, only the singular proper nouns are highlighted.

Figure 13. Language Menu

This is the Translate To Language menu, and it allows the user to choose from one of 15 languages.
When translation tools are used (shown below), this will be the target language of the translation.

14

Figure 14. Right Click Context Menu, Quick Translation

This is a translation tool that is always available to the user, no matter which of three modes of

operation he or she is currently in. By right clicking on a word, or a selection, a context menu appears
and allows you to quickly see a translation of the selected word or sentences.

Figure 15. Quick Translation in a Balloon Tooltip

This is how the translated text appears. Clicking anywhere makes the balloon tooltip disappear.

15

Figure 16. Quick Translation of a Larger Text Section

This translation tool can be used to translate larger blocks of text, while preserving the formatting of

the text.

Figure 17. Translate Mode (to French)

The third mode of operation is the Translate Mode. It allows for permanent translation of the given text

to one of 15 supported languages. It translates a page at a time, displaying the original page on the

left and the translated version on the right. In this example, the English text is translated to French.

16

Figure 18. Translate Mode (to Thai)

Here, the same text is translated to Thai.

4. Conclusion and Future Work

In this project, we have designed and built a system that allows the user to read books while

augmenting their experience using various computational linguistics methods. The user is able to

quickly translate any part of the text into one of sixteen languages. The program also allows beginners

to learn English grammar by visualizing lessons and examples from their favourite e-book. This puts
the examples in context and makes learning intuitive and fun.

We would like to extend our system to include a dictionary as well as voice reader.

Dictionary bundling – Continuing with the theme of practically unlimited storage, we can easily

imagine a book being bundled with a look-up dictionary that is capable of providing a translation

of every word and expression in the text.

Voice reader – With a text-to-speech translator, we could have an option where the software
automatically reads out the e-book.

17

5. System Manual

5.1 Deployment

5.1.1. As Java Web-Start application

The program is distributed as a Java Web-Start application accessible over the Internet. Click ―Launch‖

button at the following url http://www.cse.yorku.ca/~ameeta/CLBook/launch.html to launch the
application.

Requirements: A compatible version of the Java Runtime Environment (JRE) installed on the client
machine. The installation of the Java Development Kit (JDK) is not required.

5.1.2. As Java Desktop application

 Please download and extract the ―CL_Book.zip‖ archive.

 Extract it to any folder and navigate there.

 Double click the CL_Book.jar file to start the program.

18

5.2 Functionality

5.2.1 Opening a book

In order to open a book, select File from the menu bar, and click Open. Alternatively, you can

use the Ctrl+O shortcut.

This will bring up an Open dialog.

Navigate to the folder where your eBook resides. Note that the CL Book program only supports

books in plain text format at this time. They must have .txt extension. You can choose All Files

from "Files of type" if your file has a different extension. Click Open or double-click your book to

load it.

5.2.2 Closing a book

To close a book, select File from the menu bar, and click Close. You can also use the Ctrl+W

shortcut. Additionally, you can open another book directly.

19

5.2.3 Changing mode of operation

To change the mode of operation, select Mode from menu bar. This allows you to choose

between the three modes.

5.2.3.1 Using the Reading Mode

This Mode offers simple eBook reading functionality. The page navigation controls are at

the bottom. When a book is loaded, they become enabled.

There are buttons to go to the beginning/end of the book. There are also buttons to go to

the next/previous pages. It shows you the current page number underneath each page,

and there is a "Go To Page" button in the middle.

5.2.3.2 Using the Grammar Mode

In the grammar mode, a sidebar with the list of lessons appears on the right.

20

5.2.3.3 Using the Translate Mode

In the Translate Mode, the left hand side shows one page of the original book, and the

right hand side shows the translated version.

You can control the language to translate to from the menu bar, under the Language To

Translate menu.

5.2.4 Using the right-click quick translate tool

If you want to quickly translate a word or any amount of text in the reader, you can simply

right click on a word or a selection to bring up a context menu.

Click on "Translate to Language" (note that you can control the target language from the

menu bar).

A translation appears. Click anywhere on the text again to close the balloon tooltip.

21

6. References

[1] Kristina Toutanova, Dan Klein, Christopher Manning, and Yoram Singer. 2003. Feature-Rich Part-of-

Speech Tagging with a Cyclic Dependency Network. In Proceedings of HLT-NAACL 2003, pp. 252-259.

[2] Kristina Toutanova and Christopher D. Manning. 2000. Enriching the Knowledge Sources Used in a

Maximum Entropy Part-of-Speech Tagger. In Proceedings of the Joint SIGDAT Conference on Empirical

Methods in Natural Language Processing and Very Large Corpora (EMNLP/VLC-2000), pp. 63-70.

[3] List of grammar topics: http://www.learnenglish.de/grammarpage.htm, accessed on Apr 26, 2010

[4] List of grammar topics: http://www.edufind.com/english/grammar/grammar_topics.php, accessed

on Apr 26, 2010

[5] Building a Large Annotated Corpus of English: The Penn Treebank, Mitchell P. Marcus, Mary Ann

Marcinkiewicz, Beatrice Santorini

7. Appendix

7.1. The Penn Treebank POS tagset

1. CC Coordinating conjunction

2. CD Cardinal number

3. DT Determiner

4. EX Existential there

5. FW Foreign word

6. IN Preposition/subordinating participle conjunction

7. JJ Adjective

8. JJR Adjective, comparative

9. JJS Adjective, superlative

10. LS List item marker

11. MD Modal

12. NN Noun, singular or mass

13. NNS Noun, plural

14. NNP Proper noun, singular

15. NNPS Proper noun, plural

16. PDT Predeterminer

17. POS Possessive ending

18. PRP Personal pronoun

19. PRP$ Possessive pronoun

20. RB Adverb

21. RBR Adverb, comparative

22. RBS Adverb, superlative

23. RP Particle

24. SYM Symbol (mathematical or scientific)

25. TO to

26. UH Interjection

27. VB Verb, base form

28. VBD Verb, past tense

29. VBG Verb, gerund/present

30. VBN Verb, past participle

31. VBP Verb, non-3rd ps. sing. Present

32. VBZ Verb, 3rd ps. sing. present

33. WDT wh-determiner

34. WP wh-pronoun

35. WP$ Possessive wh-pronoun

36. WRB wh-adverb

37. # Pound sign

38. $ Dollar sign

39.. Sentence-final punctuation

http://nlp.stanford.edu/~manning/papers/tagging.pdf
http://nlp.stanford.edu/~manning/papers/tagging.pdf
http://nlp.stanford.edu/~manning/papers/emnlp2000.pdf
http://nlp.stanford.edu/~manning/papers/emnlp2000.pdf
http://acl.ldc.upenn.edu/J/J93/J93-2004.pdf

22

40. , Comma

41. : Colon, semi-colon

42. (Left bracket character

43.) Right bracket character

44. " Straight double quote

45. ' Left open single quote

46. " Left open double quote

47. ' Right close single quote

48. " Right close double quote

7.2 CL Lessons.txt

Lesson 1: ADJECTIVES

adjective

ADJECTIVES

Adjectives describe a noun.

They do not change their form depending on the gender or number of the noun.

"Show Adjectives"

 1.1: Comparative Adjectives

adjectiveComp

Comparative Adjectives

Comparative Adjectives: To show adjective in the comparative form <i>more +

adjective</i>.

"Show Comparative Adjectives"

 1.2: Superlative Adjectives

adjectiveSuper

Superlative Adjectives

Superlative Adjectives: To show adjective in the superlative form <i>most + adjective</i>.

"Show Superlative Adjectives"

Lesson 2: ADVERBS

adverb

ADVERBS

Adverbs modify or tell us more about verbs, adjectives or other adverbs.

In most cases, they are formed by adding -ly to an adjective.

"Show Adverbs"

