
11-711 Algorithms for NLP

The Earley Parsing Algorithm

Reading:

Jay Earley,

“An Efficient Context-Free Parsing Algorithm”

Comm. of the ACM vol. 13 (2), pp. 94–102

The Earley Parsing Algorithm

General Principles:

� A clever hybrid Bottom-Up and Top-Down approach

� Bottom-Up parsing completely guided by Top-Down predictions

� Maintains sets of “dotted” grammar rules that:

– Reflect what the parser has “seen” so far

– Explicitly predict the rules and constituents that will combine
into a complete parse

� Similar to Chart Parsing - partial analyses can be shared

� Time Complexity � ��� 3 � , but better on particular sub-classes

� Developed prior to Chart Parsing, first efficient parsing
algorithm for general context-free grammars.

1 11-711 Algorithms for NLP

The Earley Parsing Method
� Main Data Structure: The “state” (or “item”)

� A state is a “dotted” rule and starting position:

��� 	
 1� � � � � � � �

 ��� �

� The algorithm maintains sets of “states”, one set for each
position in the input string (starting from 0)

� We denote the set for position � by ��

2 11-711 Algorithms for NLP

The Earley Parsing Algorithm

Three Main Operations:

� Predictor: If state �� 	
 1� � � � � � � �

 � � ��� �� then for every
rule of the form � 	 � 1� � � � � , add to �� the state

� � 	 � � 1� � � � � � � �

� Completer: If state �� 	
 1� � �

 � � � �� �� then for every state
in � � of form ��� 	
 1� � � � � � � �
 � ��� � , add to �� the state

��� 	
 1� � � � � � � �
 � ��� �

� Scanner: If state �� 	
 1� � � � � � � �

 � � �� �� and the next
input word is �� � 1 � , then add to �� � 1 the state

��� 	
 1� � � � � � � �

 � � �

3 11-711 Algorithms for NLP

The Earley Recognition Algorithm
� Simplified version with no lookaheads and for grammars

without epsilon-rules

� Assumes input is string of grammar terminal symbols

� We extend the grammar with a new rule �"! 	 � $

� The algorithm sequentially constructs the sets �� for
0 # � # � $ 1

� We initialize the set � 0 with � 0 % � � ! 	 � � $ � 0 �&
4 11-711 Algorithms for NLP

The Earley Recognition Algorithm

The Main Algorithm: parsing input � � 1� � � � '

1. � 0 % � �(! 	 � � $ � 0 �&

2. For 0 # � # � do:
Process each item) � �� in order by applying to it the single
applicable operation among:

(a) Predictor (adds new items to ��)

(b) Completer (adds new items to ��)

(c) Scanner (adds new items to �� � 1 �
3. If �� � 1 * , Reject the input

4. If � � and � ' � 1 % � �(! 	 � $ � � 0 �& then Accept the input

5 11-711 Algorithms for NLP

Earley Recognition - Example

The Grammar:

� 1 � � 	 +, -,

� 2 � +, 	 �./ �0 � �

� 3 � +, 	 �./ �

� 4 � +, 	 �0 � �

� 5 � -, 	 �1 � -,

� 6 � -, 	 2 +,
The original input: “ � The large can can hold the water”
POS assigned input: “ � art adj n aux v art n”
Parser input: “ � art adj n aux v art n $”

6 11-711 Algorithms for NLP

Earley Recognition - Example

The input: “ � art adj n aux v art n $”

� 0: � �(! 	 � � $ � 0 �

� � 	 � +, -, � 0 �

� +, 	 � �. / �0 � � � 0 �

� +, 	 � �. / � � 0 �

� +, 	 � �0 � � � 0 �

� 1: � +, 	 �./ � �0 � � � 0 �

� +, 	 �./ � � � 0 �

7 11-711 Algorithms for NLP

Earley Recognition - Example

The input: “ � art adj n aux v art n $”

� 1: � +, 	 �./ � �0 � � � 0 �

� +, 	 �./ � � � 0 �

� 2: � +, 	 �./ �0 � � � � 0 �

8 11-711 Algorithms for NLP

Earley Recognition - Example

The input: “ � art adj n aux v art n $”

� 2: � +, 	 �./ �0 � � � � 0 �

� 3: � +, 	 �./ �0 � � � � 0 �

9 11-711 Algorithms for NLP

Earley Recognition - Example

The input: “ � art adj n aux v art n $”

� 3: � +, 	 �./ �0 � � � � 0 �

� � 	 +, � -, � 0 �

� -, 	 � �1 � -, � 3 �

� -, 	 � 2 +, � 3 �

� 4: � -, 	 �1 � � -, � 3 �

10 11-711 Algorithms for NLP

Earley Recognition - Example

The input: “ � art adj n aux v art n $”

� 4: � -, 	 �1 � � -, � 3 �

� -, 	 � �1 � -, � 4 �

� -, 	 � 2 +, � 4 �

� 5: � -, 	 2 � + , � 4 �

11 11-711 Algorithms for NLP

Earley Recognition - Example

The input: “ � art adj n aux v art n $”

� 5: � -, 	 2 � + , � 4 �

� +, 	 � �. / �0 � � � 5 �

� +, 	 � �. / � � 5 �

� +, 	 � �0 � � � 5 �

� 6: � +, 	 �./ � �0 � � � 5 �

� +, 	 �./ � � � 5 �

12 11-711 Algorithms for NLP

Earley Recognition - Example

The input: “ � art adj n aux v art n $”

� 6: � +, 	 �./ � �0 � � � 5 �

� +, 	 �./ � � � 5 �

� 7: � +, 	 �./ � � � 5 �

13 11-711 Algorithms for NLP

Earley Recognition - Example

The input: “ � art adj n aux v art n $”

� 7: � +, 	 �./ � � � 5 �

� -, 	 2 +, � � 4 �

� -, 	 �1 � -, � � 3 �

� � 	 +, -, � � 0 �

� �(! 	 � � $ � 0 �

� 8: � �(! 	 � $ � � 0 �

14 11-711 Algorithms for NLP

Time Comple xity of Earley Algorithm
� Algorithm iterates for each word of input (i.e. � iterations)

� How many items can be created and processed in �� ?

– Each item in �� has the form ��� 	
 1� � � � � � � �

 � � � ,
0 # � # �

– Thus � ��� � items

� The Scanner and Predictor operations on an item each require
constant time

� The Completer operation on an item adds items of form

��� 	
 1� � � � � � � �
 � ��� � to �� , with 0 # � # � , so it may require up
to � ��� � time for each processed item

� Time required for each iteration (��) is thus � ��� 2 �

� Time bound on entire algorithm is therefore � ��� 3 �
15 11-711 Algorithms for NLP

Time Comple xity of Earley Algorithm

Special Cases:

� Completer is the operation that may require � � � 2 � time in
iteration �

� For unambiguous grammars, Earley shows that the completer
operation will require at most � � � � time

� Thus time complexity for unambiguous grammars is � � � 2 �

� For some grammars, the number of items in each �� is
bounded by a constant

� These are called bounded-state grammars and include even
some ambiguious grammars.

� For bounded-state grammars, the time complexity of the
algorithm is linear - � ��� �

16 11-711 Algorithms for NLP

Parsing with an Earley Parser
� As usual, we need to keep back-pointers to the constituents

that we combine together when we complete a rule

� Each item must be extended to have the form

��� 	
 1 ��/ 1 �� � � � � � � �

 � � � , where the�/ � are “pointers” to the
already found RHS sub-constituents

� At the end - reconstruct parse from the “back-pointers”

� To maintain efficiency - we must do ambiguity packing

17 11-711 Algorithms for NLP

Earley Parsing - Example

The input: “ � art adj n aux v art n $”

18 11-711 Algorithms for NLP

Earley Parsing - Example

The input: “ � art adj n aux v art n $”

� 0: � �(! 	 � � $ � 0 �

� � 	 � +, -, � 0 �

� +, 	 � �. / �0 � � � 0 �

� +, 	 � �. / � � 0 �

� +, 	 � �0 � � � 0 �

� 1: � +, 	 �./ 1 � �0 � � � 0 � 1 �. /

� +, 	 �./ 1 � � � 0 �

19 11-711 Algorithms for NLP

Earley Parsing - Example

The input: “ � art adj n aux v art n $”

� 1: � +, 	 �./ 1 � �0 � � � 0 �

� +, 	 �./ 1 � � � 0 �

� 2: � +, 	 �./ 1 �0 � 2 � � � 0 � 2 �0 �

20 11-711 Algorithms for NLP

Earley Parsing - Example

The input: “ � art adj n aux v art n $”

� 2: � +, 	 �./ 1 �0 � 2 � � � 0 �

� 3: � +, 4 	 �. / 1 �0 � 2 � 3 � � 0 � 3 �
4 + , 	 �. / 1 �0 � 2 � 3

21 11-711 Algorithms for NLP

Earley Parsing - Example

The input: “ � art adj n aux v art n $”

� 3: � +, 4 	 �. / 1 �0 � 2 � 3 � � 0 �

� � 	 +, 4 � -, � 0 �

� -, 	 � �1 � -, � 3 �

� -, 	 � 2 +, � 3 �

� 4: � -, 	 �1 � 5 � -, � 3 � 5 �1 �

22 11-711 Algorithms for NLP

Earley Parsing - Example

The input: “ � art adj n aux v art n $”

� 4: � -, 	 �1 � 5 � -, � 3 �

� -, 	 � �1 � -, � 4 �

� -, 	 � 2 +, � 4 �

� 5: � -, 	 2 6 � + , � 4 � 6 2

23 11-711 Algorithms for NLP

Earley Parsing - Example

The input: “ � art adj n aux v art n $”

� 5: � -, 	 2 6 � + , � 4 �

� +, 	 � �. / �0 � � � 5 �

� +, 	 � �. / � � 5 �

� +, 	 � �0 � � � 5 �

� 6: � +, 	 �./ 7 � �0 � � � 5 � 7 �. /

� +, 	 �./ 7 � � � 5 �

24 11-711 Algorithms for NLP

Earley Parsing - Example

The input: “ � art adj n aux v art n $”

� 6: � +, 	 �./ 7 � �0 � � � 5 �

� +, 	 �./ 7 � � � 5 �

� 7: � +, 9 	 �. / 7 � 8 � � 5 � 8 �
9 + , 	 �. / 7 � 8

25 11-711 Algorithms for NLP

Earley Parsing - Example

The input: “ � art adj n aux v art n $”

� 7: � +, 9 	 �. / 7 � 8 � � 5 �

� -, 10 	 2 6 +, 9 � � 4 � 10 -, 	 2 6 +, 9

� -, 11 	 �1 � 5 -, 10 � � 3 � 11 -, 	 �1 � 5 -, 10

� � 12 	 +, 4 -, 11 � � 0 � 12 � 	 + , 4 -, 11

� �(! 	 � � $ � 0 �

� 8: � �(! 	 � $ � � 0 �

26 11-711 Algorithms for NLP

