
 
 

 
  

  
 

 
 
 
 
 
 

Early Syntactic Theory and Computer Programs 
 
 

1. Introduction 
In spoken or written language we employ one-dimensional strings of symbols to convey measuring. 

The dimensionality is limited by our need for presenting the symbols in a single time sequence. This 
should not imply that information is stored in our minds in this manner; evidence indicates the contrary 
position. Thus, a speaker/writer apparently transforms stored information into a linear output string, and 
a listener/reader decodes this linear string. Two conditions prevail: (1) the universe of discourse is 
approximately the same for both speaker/writer and listener/reader; and (2) the decoding process is an 
approximate inverse of the encoding process. 

Two major kinds of information processing are apparently involved in constructing and deciphering 
sentences (there are other considerations). Semantic processing analyzes the meaning of individual 
symbols (words); syntactic processing analyzes words as members of word classes and with the structural 
relationships between classes. There is difficulty in drawing sharp distinctions between the two, especially 
when definition of membership in a class of words is dependent upon the meaning of a word. 

We are only going to concern ourselves in the latter category for the time being. Many different 
models have been proposed for syntactic processing of English sentences and a number of these methods 
have been implemented on digital computers. All such processes associate additional structures with the 
sentences of a language. It is useful to digress at this point to discuss formal languages first, in particular 
the Chomsky hierarchy, since they make for explicit models with well formed rules, easily implementable 
on digital computers, and have been used in connection with natural languages. 

 
2. Formal Languages 

Formal languages sprang to life around 1956 when Noam Chomsky gave a mathematical model of a 
grammar in connection with his study of natural language. Thus we define a formal language abstractly as 
a mathematical system. This will allow us to make vigorous statements about formal languages and 
develop a body of knowledge which can be applied to them. So we make the following definitions: 

 
alphabet (or vocabulary) - any finite set of symbols 

 
sentences - over an alphabet, a sentence is any string of finite length composed of symbols from the 

alphabet. Synonyms for sentences are string and word. The empty sentence, E, in the sentence 
consists of no symbols. If V is an alphabet, then V* denotes the set of all sentences composed of 
symbols of V, including E. We use V+ to denote the set V*-{ E} . Thus, if V = { 0,1} , then V* = { E, 0, 
1, 00, 01, 10, 11, 000, ...}  and V+ = { 0, 1, 00, 01, 10, 11, 000, ...). 

 
language - any set of sentences over an alphabet. 

 

 
2.1 Formal Notion of a Grammar 

Formally, we denote a grammar G by (Vn, Vt, P, S). The symbols Vn, Vt, P, and S are, respectively, the 
variables, terminals, productions, and start symbol. Vn, Vt, and P are finite sets. We assume that Vn and Vt 
contain no elements in common; i.e., 
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Vn ↔Vt = φ 
 

Vn ≈ Vt = V 

 
 

where φ denotes the empty set and, conventionally 

 
The set of productions P consists of expressions of the form α    →  β, where α is a string in V+ and β is a 
string in V*. Finally, S is always a symbol in Vn. 

Customarily, we  shall  use  capital  Latin  alphabet  letters  for  variables.  Lower case  letters  at  the 
beginning of the Latin alphabet are used for terminals. Strings of terminals are denoted by lower 
case letters near the end of the Latin alphabet, and strings of variables and terminals are denoted 
by lower case Greek letters. 
Given the grammar G = (Vn, Vt, P, S), we define the language it generates as follows. If α    →  β  is a 
production of P and γ    and δ  are strings in V*, then 

  

 
γαδ → G γβδ. 

 
In English we say γαδ    directly derives γβδ   in grammar G. We say that the production α → β  is applied to the 

string γαδ  to obtain γβδ. Thus →G relates two strings exactly when the second is obtained from the first by the 
application of a single production. 

Suppose that α1, α2, ..., αm are strings in V*, and α1 → G α2, α2 →G α3, ..., αm-1 → G αm. Then we say 
α1 →αm (or α1 derives αm in grammar G). In simple terms, we say for two strings α  and β   that α *→ G β if we 
can obtain β  from α  by application of some number of productions of P. By convention, α *→ G 
β  for each string α. 

We define the language generated by G [denoted L(G)] to be { w|w is in Vt* and S →G w} . That is, a 
string is in L(G) if: 

1. The string consists solely of terminals. 
2. The string can be derived from S. 

A string of terminals and non terminals α is called a sentential form if S *→G α. 

We define grammar G1 and G2 to be equivalent if L(G1) = L(G2). 
 

Example: 
Let Vn = { S} , Vt = { 0,1} , P = { S → 0S1, S →01} . Here, S is the only variable, 0 and 1 are terminals. 

There are two productions, S → 0S1, and S → 01. By applying the first production n-1 times, followed by 
an application of the second production, we have 

 
S → 0S1 → 00S11 → 03S13 → ... →  0n-1S1n-1 → 0n1n. 

 
Furthermore, these are the only strings in L(G). Thus, L(G)={ 0n1n|n>0} . 

 

 
2.2 Chomsky Hierarchy 

Type 0 grammars are the types of grammars we have defined. Certain restrictions can be made on the 
nature of the productions of a grammar to give three other types of grammars, sometimes called types 1, 
2, and 3. 

Let G = (Vn, Vt, P, S) be a grammar. Suppose that for every production α →β in P, |β| >= |α|. [We 
use |x| to stand for the length, or numbers of symbols in the string x.] Then the grammar G is type 1 or 
context sensitive. 

Some authors require that the productions of a context sensitive grammar be of the form 1 A 2  
1  2, with 1, 2 and  in V*,  ~= E and A in Vn. It can be shown that this restriction does not change 
the  class  of  languages  generated.  However,  it  does  motivate  the  name  context  sensitive  since  the 
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production 1 A 2  1  2 allows A to be replaced by  whenever A appears in the context of 1 and 
2. 

Let G = (Vn, Vt, P, S). Suppose that for every production    in P 
1.  is a single variable 
2.  is any string other than E. 

Then the grammar is called type 2 or context free. Note that a production of the form A   allows the 
variable A to be replaced by the string  independent of the context in which A appears. Hence the name 
context free. 

Let's consider an interesting example of a context-free grammar. It is G = (Vn, Vt, P, S), where Vn = { 
S, A, B} , Vt = { a, b} , and P consists of the following 

 
S  AB A  BAA 
S  bA B  b 
A  a B  bS 
A  aS B  aBB 

 

 
The grammar G is context-free since for each production, the left-hand side is a single variable and the 
right-hand side is a non-empty string of terminals and variables. The languages L(G) is the set of all 
words in V*t consisting of an equal number of a's and b's. We shall prove this statement by induction on 

the length of a word. For w in V*t, 
 

1. S * w iff w consists of an equal number of a's and b's. 
2. A * w iff w has one more a than it has b's. 
3. B * w iff w has one more b than it has a's. 

 

 
The reduction hypothesis is certainly true if |w| = 1, since A * a, B * b, and no other terminal string of 

length one is derivable from S. Also, no strings of length one, other than a and b are derivable from A 
and B, respectively. Suppose that the inductive hypothesis is true for all w of length k-1 or less. We shall 
show that it is true for|w|=k. First, if S * w, then the derivation must begin with either S  aB or S  
bA. In the first case, w is of the form aw1, where |w1| = k-1 and B * w1. By the induction hypothesis, 

the number of b's in w1 is one more than the number of a's, so w consists of an equal number of a's and 
b's. A similar argument prevails if the derivation begins with S  bA. We must now prove the "only if" of 
part (1), that is, if |w|=k and w consists of an equal number of a's and b's, then S * w. Either the first 
symbol of w is a or it is b. Assume that w=aw1. Now|w1|=k-1, and w1 has one more b than a. By the 
inductive hypothesis, B * w1. But then S * aB * aw1 = w. A similar argument prevails if the first 
symbol of w is b. Our task is not done. To complete the proof, we must show parts (2) and (3) at the 
inductive hypothesis for w of length k. These parts are proved in a manner similar to our method of proof 
for part (1). 

Let G = (Vn, Vt, P, S) be a grammar. Suppose that every production in P is of the form A  aB or A 
 a, where A and B are variables and a is a terminal. Then G is called a type 3 or regular grammar. 

It should be clear that every regular grammar is context free; every context free grammar is context 
sensitive; every context sensitive grammar is type 0. We call a language that can be generated by a type 0 
grammar or type 0 language, and so forth. 

In summary, let us say that formal grammars present a natural way to order languages by the 
restrictions which can be placed on the rewriting rules. Ordering from the most powerful to the least, we 
have: 

A type 0 language or unrestricted rewriting system is generated by a grammar in which all rules are of 
the form x  y where x and y are strings in V*. 
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A type 1 language or context sensitive language is generated by a grammar in which all rules are of this 
form and, in addition, the number of symbols in y (written |y|) is not less than the number of symbols in 
x. The force of this restriction is best appreciated by examining a rewriting rule which violates it. It can be 
shown (although we will not do so) that a language generated by a context sensitive grammar can also be 
generated by a grammar in which all rules are of the form xAy  xwy where w, x, and y are strings in V* 
and A is a variable symbol. Then we can interpret xAy  xwy as "string w may be derived from A if A 
appears in the context of x and y". 

Context free or type 2 languages are generated by grammars in which all the rules are of the form A  x 
where, as before, A is a variable and x is a string in V*. 

Finally, regular or type 3 languages are generated by grammars whose rules are written either A  aB 
or A  a where a is a terminal symbol and B is a variable symbol. 

Since all type 3 languages are type 2 languages, all type 2 languages are type 1 languages, and type 1 
are type 0 languages, it is not surprising to find that very powerful automata are required to accept type 0 
languages, somewhat less powerful to accept type 1 languages, and so forth. 

 
3. Syntactic Theories 
3.1 Dependency Grammars 

Conceptually, one of the simplest grammars is the dependency grammar developed by David G. 
Hays. According to this grammar, a sentence is built up from a hierarchy of dependency structures, 
where each word in the sentence, except an origin word, usually the main verb, is related to the sentence 
by dependence on another word in the sentence. 

For example, the string "the house" is made up of two elements, with "the" dependent on "house". The 
article "the" delimits "house", and is, thus, dependent upon "house" for its meaning in the sentence. This is 
a very pragmatic use of the word "meaning". In the phrase "in bed", "bed" is dependent upon the 
preposition "in" to connect it to the rest of the sentence, and thus depends upon this preposition. 

A word can have more than one dependent. In the phrase "boy and girl", both "boy" and "girl" are 
dependent upon the governor of the phrase, the conjunction "and". Similarly, in the phrase "man bites 
dog", both "man" and "dog" are dependent upon the verb "bite". 

A graphic representation of the syntactic structures associated with some strings by a dependency 
grammar is shown below. 

 
(a) "in bed" (b) "in the house" (c) "the man treats the boy and 

the girl in the park" 
in in treats 

 
bed  house  man and 

  
the   

the 
 

boy 
 

girl 

     
the 

 
the   in 

      
park 

 

the 
 

 
These structures are downward branching trees. Each node of the tree is labeled with a word from the 
string. There is no limit on the number of branches from a node. A word is directly dependent upon any 
word immediately above it in the tree. 
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Such trees are constructed by investigating all possible connections between words in the initial 
string. The defining postulate of a dependency grammar is that "two occurrences can be connected only if 
every intervening occurrence depends directly or indirectly on one or the other of them." Thus, local con- 
nections must be made first, and then more distant connections may be tested for validity. The localiza- 
tion assumption is convenient for computer processing. 

Another important property of a dependency grammar is the isolation of word order rules and agree- 
ment rules. The structure tables for the grammar define allowable sequences of dependencies in terms of 
word classes. For example, a noun followed by a verb may be in subject-verb relationship. If this word- 
order criteria is met, agreement in number may then be checked. 

If, for each successful connection made, the rule that generated the dependency connection is re cord 
ed, the use of a particular word occurrence is the sentence (e.g., as subject, object, object of proposition, 
etc.) can be attached to the tree. 

 
 

3.2 Immediate Constituent Grammars 
Another type of grammar used to describe English syntax is an immediate constituent grammar. The 

basic premise of this grammar is that contiguous substrings of a sentence are syntactically related. Brack- 

ets or labeled brackets are used to demark syntactically significant substrings. These brackets may be 

nested, but they may not overlap. The sentence is enclosed in the outermost bracket pair. [Chomsky calls 

this type of grammar a context-free phrase structure grammar.] Consider the sentence "the man ate the 

apple." Bracketing the syntactically significant phrases we get: 

((the man) (ate (the apple))) 

Those unlabeled brackets demark the three principal substructures of the sentence. Usually, when 

bracketing is done with a phrase structure grammar, the brackets are labeled in some way. For ex ample, 

we can use "{ } " to enclose a sentence, "[]" to enclose a verb phrase, and "()" to enclose a noun phrase. 

Then the bracketed sentence would be: 

{ (the man) [ate (the apple) ]} 
 
 

The more common way to represent the constituent structure of a sentence is with a tree diagram: 
 
 

Sentence 
 
 

NP VP 
 
 

T N V NP 
 
 

T N 
 
 

the man ate the apple 
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The following simple grammar illustrates this process: 
 

(i) Sentence  NP + VP 
(ii) NP  T + N 
(iii) N  A + N 
(iv) VP  V + NP 
(v) T  the 
(vi) A  green, red 
(vii) N  man, apples 
(viii) V  ate, the 

 

The following lines are a derivation of the sentence "the  man ate the green apples". The numbers to 
the right refer to the rules used in generating this sentence from the "rewrite" rules. 

 
SENTENCE       
NP + VP (i) 
T + N + VP (ii) 
the + N + VP (v) 
the + man + VP (vii) 
the + man + V + NP (iv) 
the + man + ate + NP (viii) 
the + man + ate + T + N (ii) 
the + man + ate + the + N (v) 
the + man + ate + the + A + N (iii) 
the + man + ate + the + green + N (vi) 
the + man + ate + the + green + apples (vii) 

 

 
The second line of this derivation is formed in accordance with rule (i) by rewriting Sentences as NP + 
VP, and so on. 

The derivation can be represented by the following tree structure: 
 

Sentence 
 

 NP   VP   
 
T   

N 
 

V   
NP 

     
T    

N  

       
A   

N 
 
the  

 
man 

 
ate 

 
the   

green  
 
apples 

 
A substring is called a "constituent" of a sentence if, from all the words of the substring (and only 

those words), we can trace back to some single nodes of the tree. If this node is labeled Q, then we say 
that this substring is a "constituent of type Q." note that "the green apples" is a constituent of type NP, but 
"the green" is not a constituent of the sentence, because both these words cannot be traced back to a single 
node from which only they originate. 

It is sometimes possible to construct two correct distinct diagrams for the same sentence. Chomsky 
calls  this  phenomena  "constructional  homonymity".  When  this  occurs,  the  sentence  in  question  is 
ambiguous. 
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3.3 Categorical Grammars 
Syntactic analysis performed on the basis of rules of an immediate constituent grammar involves two 

independent dictionary lookup operations. Parsing operations handle words as members of classes. 
Therefore, on a first pass, each word occurrence in a sentence is associated with its possible syntactic 
categories. Subsequent references to the list of grammar rules determine which adjacent constituents in a 
string can be combined into higher level constituents. This lookup operation is iterated each time a new 
word category replaces two lower level syntactic markers. 

With large vocabulary lists and many grammar rules, these lookups take a disproportionate amount 
of time, and this time increases rapidly with list size. Thus a goal of avoiding a lookup operation for 
grammar rules can be identified. If we can assign "grammatical types" to the words of English in such a 
way that the grammatical correctness of a sentence can be determined by a computation, we can avoid 
some of the difficulty caused by the lookup operations. 

Obviously, such a language coding could not be commutative. For example, the sequence "the boy" is 
allowable as a syntactic unit in a sentence and "boy the" is not. However, some coding for parts of speech 
have been developed (due to Bar-Hillel). Let us illustrate this class coding with an example. Recall that a 
pronominal adjective has the property that the resulting adjective-noun string can again be treated in the 
same way at the original noun. Bar-Hillel assigns the noun the grammatical code n, and an adjective the 
code n/[n]. The string has type n/[n] . n (where "." indicated concatenation). Performing a quasi- 
arithmetic cancellation from the right, we compute the code for the string type as 
n/[n] . n = n 

As another example, an intransitive verb, such as "eats" in "John eats" is given type s/(n). The string 
"John eats" therefore has type 
n . s/(n) = s 
The indicated resulting type is s, or sentence, after cancellation. 

If the basic grammatical categories are denoted by s, n1, n2, ..., m1, m2, ..., then the  operator 
categories of a grammar are denoted by: 
s / (n1)(n2)...(ni)[m1]...[mj]... ; i+j >= 1 

As indicated, a term enclosed by parenthesis, e.g., (nk), can only be cancelled from the left; a term 
enclosed by brackets, e.g., [mj], can be cancelled from the right. Some examples: 

phrase : very large house 
types :  n/[n] . n/[n] . n  n/[n] . n  n 

[n[n]] 
Note that this algebra is not associative. The derivation starts by combining the two left hand terms to 

get a derived type of n/[n] for the substring "very large". Then the right hand cancellation is made, 
yielding the grammatical type n for the entire string. If, in attempting to compute the type of this 
substring, we combined the right hand pair first, we would be left to find the type of a string with two 
constituent codes: 

n/[n] 
------- . n 
[n/[n]] 

 
This pair is not further reducible. Thus the pairing must go the other way if this substring is to house a 
single derived category. 

A derivation loading to a single operator category or single basic category is called a proper derivation. 
A pairing for a sentence is any proper derivation whose terminal symbol is s. The figure below shows the 
only proper derivation, and also a pair, of the simple sentence "Poor John sleeps." 
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Poor John sleeps 

n/[n] . n . S/(n) 

n . S/(n) 

S 

In a categorical grammar, one defines a substring t to be a constituent of a sentence s if in a proper 
derivation of s there is included a proper derivation of t. This definition is equivalent to our earlier 
definition of constituent in terms of nodes of a tree. 

The derivation of "Poor John sleeps" can be represented by the tree that follows: 
 
 

s 
 
 

n s/(n) 
 
 

n/[n] n 
 
 

poor John sleeps 

Each substring of a constituent can be traced back to a single node. Note that the boundaries of a 
constituent are dependent on the context of the substring. For example, "John sleeps" has an immediate 
derivation to a single category marker, S; however, in the context "poor John sleeps" there is NO proper 
derivation in which "John sleeps" is reduced to a single constituent. 

 
3.4 Predictive Syntactic Analysis 

Predictive syntactic analysis is based upon a restricted form of immediate constituent grammar. The 
restrictions are associated with the order in which words in the input string are scanned during analysis. 
A predictive parser analyses a sentence in one left-to-right scan through the words. 

When a person reads 'the' in a construction, he expects a noun to follow. Similarly, he predicts, from 
the appearance in an initial noun phrase, the later occurrence of a verb phrase. Predictive analysis works 
in a similar manner. An initial prediction is made that the string to be scanned is a sentence. From this 
prediction and the initial word in the sentence, further, more detailed predictions are made of the 
expected sentence structure. For example, if the first word in a sentence is 'they' the grammar table states 
that with an initial pronoun the prediction of a sentence s may be replaced by predictions of a predicate 
and then a period, or by a prediction of, successively, an adjective phrase, a predicate, and then a period - 
or by seven other sets of predictions. 

One set of these predictions at a time is placed on a pushdown list. The prediction that must appear 
at the top of this list is the one that must be satisfied first. As each successive word of a sentence is 
scanned, its syntactic type sj and the topmost prediction on the stack pi are compared. It may happen that 

this prediction pi can be completely satisfied by a member of the class sj. For example, if the prediction is 
'noun phrase', the proper noun 'Tom' completely satisfies the prediction, and 'noun phrase' would be 
removed from the top of the stack. If not, new predictions compatible with sj and pi are generated, and 
these new predictions are pushed onto the stack. If no new predictions can be made, we infer that earlier 
predictions were incorrect and an alternative path must be tried. If the terminal punctuation mark of a 
sentence is reached and all the predictions made have been satisfied, then this set of predictions 
represents a parsing of the sentence. If some predictions remain unsatisfied, or if there are no more 
predictions on the stack, but words remain, then this parsing has failed. If all sets of predictions have 
failed, the sentence is ungrammatical. 

Each set of predictions for a word class marker sj and a top prediction pi is a form of an immediate 
constituent binary rewrite rule for the predicted structure pi. The two constituents of pi are always of the 
following form: the left element is always a terminal marker (in fact sj); this element can only be rewritten 
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S     S -> PN VP 
     VP -> VB PN 
  VP   VB -> V : PT 
     PN -> he, her,... 
 VB  PN  V -> called... 
     PT -> up... 
V    PT    
 

 
 
 

to give a single symbol, i.e., a word of the sentence. The right subconstituent of pi is a complex symbol - a 
list of further predictions. 

 
 

3.5 Phrase Structure Grammars with Discontinuous Constituents 
The phrase structure grammars we have examined thus far have allowed only contiguous elements 

of a string to be syntactically related. In generating a sentence, a single syntactic constituent may be 
replaced by two or more contiguous subconstituents. Rewrite rules of the form A  B+C are sufficient to 
generate most syntactic structures found in English. However, consider the following sentence: He called 
her up. The word up is part of the verb structure, and intuitively we think of 'call up' as one constituent. 

To provide a concise notation to describe this type of discontinuous syntactic form, which appears in 
many languages, we add binary discontinuous rewrite rules. They take the form: 

A -> B:C 
The interpretation for such rewrite rules is the following. If, in generating a sentence, we have a string 
XAY, where Y is a single syntactic marker, we may rewrite the string, using the rewrite rule above, as 
XBYC. In general, when using the rule shown, A is replaced by B, and C is inserted in the string to the 
right of B, but separated from B by exactly one constituent marker. This rewrite rule is undefined if A is 
the right hand element in the string. The set of rules for the sentence 'He called her up.' is shown below. 

 
 
 

PN 
 
 
 
 
 
 
 
 

He called her up 
 

The structural diagram is no longer a simple tree diagram. The relationships within the sentence can 
no longer be shown by just bracketing. 

 
3.6 Transformational Grammars 

All syntactic theories that we have considered thus far are weakly equivalent to what Chomsky calls a 
context-free phrase structure grammar (weak equivalence of two grammars means that both grammars 
recognize exactly the same set of strings as the set of grammatical sentences, or, equivalently, generate the 
same strings). He raises several objections to such grammars and proposes additional rules to be added to 
phrase structure grammars. 

First, he proposes that the form of the rewrite rules be generalized to ZXW  ZYW. Z and W are the 
context of the single symbol X, and Y may be a string of one or more symbols. Although Z and W may be 
null, the set of elements Y that may be substituted for X is usually dependent upon Z and W. A grammar 
with such rules is called a context-sensitive phrase structure grammar. 

Another more serious objection to the phrase structure grammar is the mathematical limitation on the 
type of strings producible by such grammars. Strings of indefinite length of the form a b c a' b' c', in 
which a' is dependent on a, b' on b, and c' on c, can't be produced by a phrase structure grammar. An 
example is the sentence "Tom, Jane, and Dan are a man, woman, and programmer, respectively." 

Another objection raised by Chomsky is that sentences such as "The man drives the car" and "The car 
is driven by the man" is not intuitively related by phrase structure grammars. 

Chomsky proposed an additional set of rules, beyond the phrase structure rules, to solve these 
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problems, Chomsky proposed that after the generation of sentences by a phrase structure grammar, there 
be transformation rules that can transform one sentence into another sentence in the language, e.g., from 
active to passive voice. One such transformation would transform the two sentences "The boy stole my 
wallet" and "The boy ran away" into the complex sentence "The boy stole my wallet and ran away". 

As Chomsky points out, such transformations have sets of P-markers as domain and ranges, that is, 
tree structures associated with strings with a phrase structure grammar. They are not defined on terminal 
strings. In addition to specifying how a terminal string is to be changed, a transformation must specify 
the "derived" P-marker of the new sentence. 

The introduction of transformation rules simplifies the basic phrase structure grammar.  Only  a 
simple set of "kernel sentences" need be generated. All other complex sentences can be generated by 
applying transformation rules to these sentences. In addition, if certain semantic restrictions are to be 
included in the grammar (e.g., "frightens" may have "John" as an object but "sincerity" may not), these 
restrictions need only be listed once. For a phrase structure grammar, such restrictions would have to be 
listed explicitly for both active and passive voice. 

 
3.7 String Transformational Grammars 

String transformational grammars are an intermediary between constituent analysis and 
transformational analysis. The basis assumption underlying the analysis of a sentence is that the sentence 
has one "center", an elementary sentence that represents the basic structure of the sentence. Additional 
words within the sentence are adjuncts of these basic words, or of structures within  the  sentence. 
Analysis consists of identifying that center and adjoining the remaining words, in segments, to the proper 
elements of the sentence. For example, "Today. automatic trucks from the factory which we just visited 
carry carry coal up the sharp incline." 

Trucks carry coal is the center, elementary sentence; today is an adjunct to the left of the elementary 
sentence; automatic is an adjunct to the left of the truck; just is an adjunct to the left of visit; etc. In analysis, 
each word is replaced by a marker for its syntactic category. Several constituents are strung together in 
such a way that the resulting pluri-constituent can be replaced by a marker with a constituent within it. 
This endocentric construction (i.e., one expanded from an elementary category by adjoining) can then be 
split into this head and its adjuncts. Iterating over all segments of the input string, one obtains the center 
of the string. 

The results of string analysis resemble the results of Chomsky's transformational grammar analysis. 
A sentence is resolved into a number of kernel sentences such that each main verb of the sentence is part 
of its own kernel. Some phrases containing implicit verbs are also resolved; for example, "the violinist 
arrived late" is resolved into "N, plays the violin". These kernels are identified only from the string, not 
from the structure of the associated syntactic tree (as in a Chomsky transformational analysis). 

In general, string transformational process works roughly as follows: 
(1) Dictionary hookup of each word, and replacement of the word by its category marks or 

mark. 
(2) Resolution, where possible, of multiple category marks for single words by the use of local 

context. 
(3) Multiple scans through the string - some passes from the left, some from the right. Each 
scan tries to segment the sentence into "first order strings". 

For example, to find noun phrases, the text is scanned from right to left. Whenever a noun is found, a 
noun-phrase bracket is opened on the right. The scan continuous to the left, accepting all words that can 
be a part of this phrase. When the left delimiter is found, such as an article, the phrase is closed and the 
scan is continued until no more groupings into the first order strings can be made. The form of this string 
of symbols (zero and first order) is then checked against a set of standard patterns. Alternative 
segmentations are checked and all resultant successful pairings are given. 


