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Maximum Likelihood learning of 
Gaussians for Classification

• Why we should care
• 3 seconds to teach you a new learning 

algorithm
• What if there are 10,000 dimensions?
• What if there are categorical inputs?
• Examples “out the wazoo”
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Why we should care
• One of the original “Data Mining” algorithms
• Very simple and effective
• Demonstrates the usefulness of our earlier 

groundwork

Copyright © 2001, Andrew W. Moore Gaussian Bayes Classifiers: Slide 4

Where we were at the end of the 
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This lecture…
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Gaussian Bayes Classifier 
Assumption

• The i’th record in the database is created 
using the following algorithm

1. Generate the output (the “class”) by 
drawing yi~Multinomial(p1,p2,…pNy)

2. Generate the inputs from a Gaussian PDF 
that depends on the value of yi :

xi ~ N(µi ,Σ i).

Test your understanding. Given Ny classes and m input attributes, how 
many distinct scalar parameters need to be estimated?
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MLE Gaussian Bayes Classifier
• The i’th record in the database is created 

using the following algorithm
1. Generate the output (the “class”) by 

drawing yi~Multinomial(p1,p2,…pNy)
2. Generate the inputs from a Gaussian PDF 

that depends on the value of yi :
xi ~ N(µi ,Σ i).

Test your understanding. Given Ny classes and m input attributes, how 
many distinct scalar parameters need to be estimated?

|DBi|
pi

mle = ------
|DB|

Let DBi = Subset of
database DB in which

the output class is y = i
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MLE Gaussian Bayes Classifier
• The i’th record in the database is created 

using the following algorithm
1. Generate the output (the “class”) by 

drawing yi~Multinomial(p1,p2,…pNy)
2. Generate the inputs from a Gaussian PDF 

that depends on the value of yi :
xi ~ N(µi ,Σ i).

Test your understanding. Given Ny classes and m input attributes, how 
many distinct scalar parameters need to be estimated?

(µ i
mle, Σi

mle )= MLE Gaussian for DBi

Let DBi = Subset of
database DB in which

the output class is y = i



6

Copyright © 2001, Andrew W. Moore Gaussian Bayes Classifiers: Slide 11

MLE Gaussian Bayes Classifier
• The i’th record in the database is created 

using the following algorithm
1. Generate the output (the “class”) by 

drawing yi~Multinomial(p1,p2,…pNy)
2. Generate the inputs from a Gaussian PDF 

that depends on the value of yi :
xi ~ N(µi ,Σ i).

Test your understanding. Given Ny classes and m input attributes, how 
many distinct scalar parameters need to be estimated?
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Gaussian Bayes Classification
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Gaussian Bayes Classification
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How do we deal with that?
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Here is a dataset

48,000 records, 16 attributes [Kohavi 1995]

age employmenteducation edunummarital … job relation race gender hours_workedcountry wealth
…

39 State_gov Bachelors 13 Never_married… Adm_clericalNot_in_familyWhite Male 40 United_Statespoor
51 Self_emp_not_incBachelors 13 Married … Exec_managerialHusband White Male 13 United_Statespoor
39 Private HS_grad 9 Divorced … Handlers_cleanersNot_in_familyWhite Male 40 United_Statespoor
54 Private 11th 7 Married … Handlers_cleanersHusband Black Male 40 United_Statespoor
28 Private Bachelors 13 Married … Prof_specialtyWife Black Female 40 Cuba poor
38 Private Masters 14 Married … Exec_managerialWife White Female 40 United_Statespoor
50 Private 9th 5 Married_spouse_absent… Other_serviceNot_in_familyBlack Female 16 Jamaica poor
52 Self_emp_not_incHS_grad 9 Married … Exec_managerialHusband White Male 45 United_Statesrich
31 Private Masters 14 Never_married… Prof_specialtyNot_in_familyWhite Female 50 United_Statesrich
42 Private Bachelors 13 Married … Exec_managerialHusband White Male 40 United_Statesrich
37 Private Some_college10 Married … Exec_managerialHusband Black Male 80 United_Statesrich
30 State_gov Bachelors 13 Married … Prof_specialtyHusband Asian Male 40 India rich
24 Private Bachelors 13 Never_married… Adm_clericalOwn_child White Female 30 United_Statespoor
33 Private Assoc_acdm12 Never_married… Sales Not_in_familyBlack Male 50 United_Statespoor
41 Private Assoc_voc 11 Married … Craft_repairHusband Asian Male 40 *MissingValue*rich
34 Private 7th_8th 4 Married … Transport_movingHusband Amer_IndianMale 45 Mexico poor
26 Self_emp_not_incHS_grad 9 Never_married… Farming_fishingOwn_child White Male 35 United_Statespoor
33 Private HS_grad 9 Never_married… Machine_op_inspctUnmarried White Male 40 United_Statespoor
38 Private 11th 7 Married … Sales Husband White Male 50 United_Statespoor
44 Self_emp_not_incMasters 14 Divorced … Exec_managerialUnmarried White Female 45 United_Statesrich
41 Private Doctorate 16 Married … Prof_specialtyHusband White Male 60 United_Statesrich

: : : : : : : : : : : : :
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Predicting wealth from age
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Predicting wealth from age
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Wealth from hours worked
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Wealth from years of education
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age, hours → wealth
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age, hours → wealth
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age, hours → wealth

Having 2 inputs 
instead of one helps 
in two ways:
1. Combining 
evidence from two 1d 
Gaussians
2. Off-diagonal 
covariance 
distinguishes class 
“shape”
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age, hours → wealth

Having 2 inputs 
instead of one helps 
in two ways:
1. Combining 
evidence from two 1d 
Gaussians
2. Off-diagonal 
covariance 
distinguishes class 
“shape”
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age, edunum → wealth
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age, edunum → wealth
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hours, edunum → wealth
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hours, edunum → wealth
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Accuracy
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An “MPG” example
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An “MPG” example
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An “MPG” example
Things to note:

•Class Boundaries can be weird 
shapes (hyperconic sections)

•Class regions can be non-simply-
connected

•But it’s impossible to model 
arbitrarily weirdly shaped regions

•Test your understanding: With 
one input, must classes be simply 
connected?
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Overfitting dangers
• Problem with “Joint” Bayes classifier:

#parameters exponential with #dimensions.
This means we just memorize the 

training data, and can overfit.
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Overfitting dangers
• Problem with “Joint” Bayes classifier:

#parameters exponential with #dimensions.
This means we just memorize the 

training data, and can overfit.

• Problemette with Gaussian Bayes classifier:
#parameters quadratic with #dimensions.

With 10,000 dimensions and only 1,000 
datapoints we could overfit.

Question: Any suggested solutions?
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General: O(m2)
parameters
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General: O(m2)
parameters
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Aligned: O(m)
parameters
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Aligned: O(m)
parameters
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Spherical: O(1)
cov parameters
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Spherical: O(1)
cov parameters
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BCs that have both real and 
categorical inputs?
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Easy!

Guess how?
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Mixed Categorical / Real Density 
Estimation

• Write x = (u,v) = (u1 ,u2 ,…uq ,v1 ,v2 … vm-q)

Real valued Categorical valued

P(x |M)= P(u,v |M)

(where M is any Density Estimation Model)
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Not sure which tasty

DE to enjoy? Try our…

Joint / Gauss DE 
Combo

P(u,v |M) = P(u |v ,M) P(v |M) 

Gaussian with
parameters

depending on v

Big “m-q”-dimensional 
lookup table
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MLE learning of the Joint / 
Gauss DE Combo

P(u,v |M) = P(u |v ,M) P(v |M) 

Fraction of records 
that match v

Cov. of u among 
records matching v

Mean of u among 
records matching v 

=qv

=Σv

=µv

u |v ,M ~ N(µv , Σv) , P(v |M) = qv
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MLE learning of the Joint / 
Gauss DE Combo

P(u,v |M) = P(u |v ,M) P(v |M) 

=
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Gender and Hours Worked*

*As with all the results from the UCI “adult census” dataset, we can’t 
draw any real-world conclusions since it’s such a non-real-world sample
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Joint / Gauss DE 
Combo

What we just did 
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Joint / Gauss BC
Combo

What we do next 
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Joint / Gauss BC
Combo
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Joint / Gauss BC
Combo
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Rather so-so-notation for 
“Gaussian with mean µ i,v and 
covariance Σ i,v evaluated at u”

Fraction of “y=i”
records that match 
v

=qi,v

Fraction of records 
that match “y=i”

Cov. of u among 
records matching v 
and in which y=i

Mean of u among 
records matching v 
and in which y=i

=pi

=Σi,v

=µ i,v
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Gender, Hours→Wealth
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Gender, Hours→Wealth
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Joint / Gauss DE Combo and 
Joint / Gauss BC Combo: The 

downside

• (Yawn…we’ve done this before…)
More than a few categorical attributes blah blah 

blah massive table blah blah lots of parameters
blah blah just memorize training data blah blah 
blah do worse on future data blah blah need to 
be more conservative blah
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Naïve/Gauss combo for Density 
Estimation

How many parameters?
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Naïve/Gauss combo for Density 
Estimation
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Naïve/Gauss DE Example
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Naïve/Gauss DE Example
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Naïve / 
Gauss BC ),(
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Gauss / Naïve BC Example



31

Copyright © 2001, Andrew W. Moore Gaussian Bayes Classifiers: Slide 61

Gauss / Naïve BC Example
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Learn Wealth from 15 attributes
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Learn Wealth from 15 attributes
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Learn Race from 15 attributes
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What you should know
• A lot of this should have just been a 

corollary of what you already knew
• Turning Gaussian DEs into Gaussian BCs
• Mixing Categorical and Real-Valued
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Questions to Ponder
• Suppose you wanted to create an example 

dataset where a BC involving Gaussians 
crushed decision trees like a bug. What 
would you do?

• Could you combine Decision Trees and 
Bayes Classifiers? How? (maybe there is 
more than one possible way)


