Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew's tutorials: http://www.cs.cmu.edu/~awm/tutorials. Comments and corrections gratefully received

# Learning Gaussian Bayes Classifiers 

# Andrew W. Moore Associate Professor School of Computer Science Carnegie Mellon University 

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

## Maximum Likelihood learning of Gaussians for Classification

- Why we should care
- 3 seconds to teach you a new learning algorithm
- What if there are 10,000 dimensions?
- What if there are categorical inputs?
- Examples "out the wazoo"


## Why we should care

- One of the original "Data Mining" algorithms
- Very simple and effective
- Demonstrates the usefulness of our earlier groundwork

| Where we were at the end of the MLE lecture... |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Categorical inputs only | Real-valued inputs only | Mixed Real / Cat okay |
|  | Joint BC Naïve BC |  | Dec Tree |
|  | Joint DE <br> Naive DE | Gauss DE |  |
|  |  |  |  |
| Copyright © 2001, Andeew W. Moore | Gaussin Beyes Classifers: Slide 4 |  |  |


| This lecture... |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Categorical inputs only | Real-valued inputs only | Mixed Real / Cat okay |
|  | J oint BC <br> Naïve BC | Gauss BC | Dec Tree |
|  | Joint DE <br> Naïve DE | Gauss DE |  |
|  |  |  |  |
| Copyright © 2001, Andrew W. Moore |  | Gaussian Bayes Classifiers: Slide 5 |  |




## Gaussian Bayes Classifier Assumption

- The i'th record in the database is created using the following algorithm

1. Generate the output (the "class") by drawing $y_{i} \sim \operatorname{Multinomial}\left(p_{1}, p_{2}, \ldots p_{N y}\right)$
2. Generate the inputs from a Gaussian PDF that depends on the value of $y_{i}$ :

$$
\mathbf{x}_{\mathrm{i}} \sim \mathrm{~N}\left(\mu_{\mathrm{i}}, \Sigma_{\mathrm{i}}\right) .
$$

Test your understanding. Given $N_{y}$ classes and $m$ input attributes, how many distinct scalar parameters need to be estimated?


## MIF Gauscian Bayes Classifier

Let $\mathrm{DB}_{\mathrm{i}}=$ Subset of database DB in which the database is created the output class is $y=i g$ algorithm
$\left(\mu_{i^{\text {mle }}}, \Sigma_{\text {mle }}\right)=$ MLE Gaussian for $\mathrm{DB}_{\mathrm{i}}$

2. Generate the inputs fr Gaussian PDF that depends on the $v, u$ of $y_{i}$ :

$$
\mathbf{x}_{\mathrm{i}} \sim \mathrm{~N}\left(\mu_{\mathrm{i}}, \Sigma_{\mathrm{i}}\right) .
$$

Test your understanding. Given $\mathrm{N}_{\mathrm{y}}$ classes and m input attributes, how many distinct scalar parameters need to be estimated?

MLE Gaussian Bayes Classifier Let $\mathrm{DB}_{\mathrm{i}}=$ Subset of database DB in which the output class is $y=\mathrm{i}$ g algorithm
$\left(\mu_{\mathrm{i}}^{\text {mle }}, \Sigma_{\mathrm{i}}^{\mathrm{mle}}\right)=$ MLE Gaussian for $\mathrm{DB}_{\mathrm{i}}$
2. Generate the inputs fr aussian PDF that depends on the $v$, of $y_{i}$ :
$\boldsymbol{\mu}_{i}^{m l e}=\frac{1}{\left|\mathrm{DB}_{i}\right|_{\mathbf{x}_{k} \in \mathrm{DD}} \sum_{i}^{R} \mathbf{x}_{k}{ }_{\mathrm{Cdin}} \mathbf{S}_{\mathrm{i}} \mathbf{S}_{i}^{m l e}=\frac{1}{\left|\mathrm{DB}_{i}\right|} \sum_{\mathbf{x}_{k} \in \mathrm{DB}_{i}}^{R}\left(\mathbf{x}_{k}-\boldsymbol{\mu}_{i}^{m l e}\right)\left(\mathbf{x}_{k}-\boldsymbol{\mu}_{i}^{m l e}\right)^{T}}$

## Gaussian Bayes Classification

$$
P(y=i \mid \mathbf{x})=\frac{p(\mathbf{x} \mid y=i) P(y=i)}{p(\mathbf{x})}
$$

## Gaussian Bayes Classification

$P(y=i \mid \mathbf{x})=\frac{p(\mathbf{x} \mid y=i) P(y=i)}{p(\mathbf{x})}$
$P(y=i \mid \mathbf{x})=\frac{\frac{1}{(2 \pi)^{m / 2}\left\|\mathbf{S}_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{k}-\boldsymbol{\mu}_{i}\right)^{T} \mathbf{S}_{i}\left(\mathbf{x}_{k}-\boldsymbol{\mu}_{i}\right)\right] p_{i}}{p(\mathbf{x})}$

| age | employme | education | edur | marital | ... | job | relation | race | gender | hour | country | wealth |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 39 | State_gov | Bachelors | 13 | Never_mal. | .. | Adm_cleric | Not_in_far | White | Male | 40 | United_St: | poor |
| 51 | Self_emp_ | Bachelors | 13 | Married | ... | Exec_man | Husband | White | Male | 13 | United_St: | poor |
| 39 | Private | HS_grad | 9 | Divorced | .. | Handlers_( | Not_in_far | White | Male | 40 | United_St: | poor |
| 54 | Private | 11th | 7 | Married | ... | Handlers_( 1 | Husband | Black | Male | 40 | United_St: | poor |
| 28 | Private | Bachelors | 13 | Married | $\ldots$ | Prof_specil | Wife | Black | Female | 40 | Cuba | poor |
| 38 | Private | Masters | 14 | Married | ... | Exec_man | Wife | White | Female | 40 | United_St: | poor |
| 50 | Private | 9th | 5 | Married_sp. | ... | Other_serv N | Not_in_far | Black | Female | 16 | Jamaica | poor |
| 52 | Self_emp_ | HS_grad | 9 | Married | ... | Exec_man ${ }^{\text {a }}$ | Husband | White | Male | 45 | United_St: | rich |
| 31 | Private | Masters | 14 | Never_mal. |  | Prof_speciN | Not_in_far | White | Female | 50 | United_St | rich |
| 42 | Private | Bachelors | 13 | Married | ... | Exec_man | Husband | White | Male | 40 | United_St | rich |
| 37 | Private | Some_coll | 10 | Married | $\ldots$ | Exec_man ${ }^{\text {a }}$ | Husband | Black | Male | 80 | United_St | rich |
| 30 | State_gov | Bachelors | 13 | Married | ... | Prof_speci | Husband | Asian | Male | 40 | India | rich |
| 24 | Private | Bachelors | 13 | Never_mal. |  | Adm_cleric | Own_child | White | Female | 30 | United_St: | poor |
| 33 | Private | Assoc_ac | 12 | Never_mal. | ... | Sales N | Not_in_far | Black | Male | 50 | United_St: | poor |
| 41 | Private | Assoc_voc | 11 | Married | ... | Craft_repai | Husband | Asian | Male | 40 | *MissingV, | rich |
| 34 | Private | 7th_8th | 4 | Married | ... | Transport_ H | Husband | Amer_Indi | Male | 45 | Mexico | poor |
| 26 | Self_emp_ | HS_grad | 9 | Never_mal. | ... | Farming_fi | Own_child | White | Male | 35 | United_St: | poor |
| 33 | Private | HS_grad | 9 | Never_mal. | ... | Machine_CU | Unmarried | White | Male | 40 | United_St: | poor |
| 38 | Private | 11th | 7 | Married | ... | Sales H | Husband | White | Male | 50 | United_St: | poor |
| 44 | Self_emp | Masters | 14 | Divorced | ... | Exec_man | Unmarried W | White | Female | 45 | United_St: | rich |
| 41 | Private | Doctorate | 16 | Married | ... | Prof_specil | Husband | White | Male | 60 | United_St: |  |
| : | : |  |  |  | : | : $\quad$ : |  |  | : | : | : |  |

48,000 records, 16 attributes [Kohavi 1995]











## Overfitting dangers

- Problem with "J oint" Bayes classifier: \#parameters exponential with \#dimensions.

This means we just memorize the training data, and can overfit.

## Overfitting dangers

- Problem with "J oint" Bayes classifier: \#parameters exponential with \#dimensions.

This means we just memorize the training data, and can overfit.

- Problemette with Gaussian Bayes classifier: \#parameters quadratic with \#dimensions.

With 10,000 dimensions and only 1,000 datapoints we could overfit.

Question: Any suggested solutions?






| BCs that have both real and categorical inputs? |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Categorical inputs only | Real-valued inputs only | Mixed Real / Cat okay |
| ( Classifier Pategory | J oint BC <br> Naïve BC | Gauss BC | Dec Tree <br> BC Here??? |
|  | Joint DE Naïve DE | Gauss DE |  |
| Regressor Predict |  |  |  |
| Copyrigh © 2001, Andrew W. Moore |  | Gaussian Bayes Classifiers: Slide 39 |  |


| BCs that have both real and categorical inputs? |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Categorical inputs only | Real-valued inputs only | Mixed Real / Cat okay |
|  | Joint BC <br> Naïve BC | Gauss BC | Dec Tree BC Here? |
|  | Joint DE <br> Naïve DE | Gauss DE |  |
|  |  | Easy! <br> uess how? |  |
| Copyright © 2001, Andrew W. Moore | Gaussian Bayes Classifiers: Slide 40 |  |  |

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{BCs that have both real and categorical inputs?} <br>
\hline \& Categorical inputs only \& Real-valued inputs only \& Mixed Real / Cat okay <br>
\hline Classifier Pategory \& Joint BC

Naive $B C$ \& Gauss BC \& Dec Tree <br>
\hline $y=$ Density Prob- \& Joint DE \& Gauss DE \& Gauss// oint DE <br>
\hline 隹Estimator ability \& Naive DE \& Gauss DE \& Gauss Naive DE <br>

\hline $$
\begin{aligned}
& \text { ned } \\
& \text { Redict } \\
& \text { Regressor }
\end{aligned}
$$ \& \& \& <br>

\hline Copyigit 0 2001, Andiew w. More \& \& \multicolumn{2}{|r|}{Gausian Beyes Classifers: Slide 41} <br>
\hline
\end{tabular}

| BCs that have both real and categorical inputs? |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Categorical inputs only | Real-valued inputs only | Mixed Real / Cat okay |
|  | Joint $B C$ <br> Naive $B C$ | Gauss BC | Dec Tree Gauss/foint BC जिए- Nä̈rer |
|  | Loint DE Naive DF | Gauss DE Gauss.DE | Gauss/J oint DE Gauss Naive DE |
|  |  |  |  |
|  |  |  |  |

## Mixed Categorical / Real Density Estimation

- Write $\mathbf{x}=(\mathbf{u}, \mathbf{v})=(\underbrace{u_{1}, u_{2}, \ldots u_{q}}_{\text {Real valued }}, \underbrace{v_{1}, v_{2} \ldots v_{m-q}}_{\text {Categorical valued }})$

$$
P(\mathbf{x} \mid M)=P(\mathbf{u}, \mathbf{v} \mid M)
$$

(where $M$ is any Density Estimation Model)




*As with all the results from the UCI "adult census" dataset, we can't draw any real-world conclusions since it's such a non-real-world sample

## What we just did — Joint / Gauss DE Combo

## What we do next $\rightarrow$ oint / Gauss BC Combo

$$
\begin{aligned}
& \text { Joint / GausS BC } \\
& \text { Combo } \\
& P(Y=i \mid \mathbf{u}, \mathbf{v})=\frac{p\left(\mathbf{u}, \mathbf{v} \mid M_{i}\right) P(Y=i)}{p(\mathbf{u}, \mathbf{v})} \\
&=\frac{p\left(\mathbf{u}, \mid \mathbf{v}, M_{i}\right) p\left(\mathbf{v} \mid M_{i}\right) P(Y=i)}{p(\mathbf{u}, \mathbf{v})} \\
&=\frac{N\left(\mathbf{u} ; \boldsymbol{\mu}_{i, \mathbf{v}}, \mathbf{S}_{i, \mathbf{v}}\right) q_{i, \mathbf{v}} p_{i}}{p(\mathbf{u}, \mathbf{v})}
\end{aligned}
$$

| $\begin{gathered} \text { Joint / Gauss BC } \\ \text { Combo } \\ P(Y=i \mid \mathbf{u}, \mathbf{v})=\frac{p\left(\mathbf{u}, \mathbf{v} \mid M_{i}\right) P(Y=i)}{n(\mathbf{v} \mathbf{v})} \end{gathered}$ |  |
| :---: | :---: |
| $\begin{aligned} \mu_{i, v}= & \begin{array}{l} \text { Mean of } \mathbf{u} \text { among } \\ \\ \\ \text { records matching } \mathbf{v} \\ \text { and in which } \mathrm{y}=\mathrm{i} \end{array} \end{aligned}$ | $\begin{gathered} p(\mathbf{u}, \mathbf{v}) \\ \frac{p\left(\mathbf{u}, \mid \mathbf{v}, M_{i}\right) p\left(\mathbf{v} \mid M_{i}\right) P(Y=i)}{p(\mathbf{u}, \mathbf{v})} \end{gathered}$ |
| $\begin{array}{\|l\|l\|} \hline \Sigma_{i, v}= & \text { Cov. of } \mathbf{u} \text { among } \\ \text { records matching } \mathbf{v} \\ \text { and in which } \mathrm{y}=\mathrm{i} \end{array}$ | $N\left(\mathbf{u} ; \boldsymbol{\mu}_{i, \mathbf{v}}, \mathbf{S}_{i, \mathbf{v}}\right) q_{i, \mathbf{v}} p_{i}$ |
|  | $p(\mathbf{u}, \mathbf{v})$ |
| $p_{i}=\begin{aligned} & \text { Fraction of records } \\ & \text { that match " } y=i " \end{aligned}$ | covariance $\Sigma_{i, v}$ evaluated at $\mathbf{u}^{\prime \prime}$ |
|  |  |




## Joint / Gauss DE Combo and Joint / Gauss BC Combo: The downside

- (Yawn...we've done this before...)

More than a few categorical attributes blah blah blah massive table blah blah lots of parameters blah blah just memorize training data blah blah blah do worse on future data blah blah need to be more conservative blah

# Naïve/Gauss combo for Density Real Categorical Estimation <br> y.in <br> $u_{j}\left|M \sim N\left(\mu_{j}, \sigma_{j}^{2}\right) \quad v_{j}\right| M \sim \operatorname{Multinomial}\left[g_{j 1}, q_{j 2}, \ldots, q_{j v_{j}}\right]$ 

Naïve/Gauss combo for Density

$$
u_{j}\left|M \sim N\left(\mu_{j}, \sigma_{j}^{2}\right) \quad v_{j}\right| M \sim \operatorname{Multinomial}\left[q_{j 1}, q_{j 2}, \ldots, q_{j N_{j}}\right]
$$

$$
\mu_{j}=\frac{1}{R} \sum_{k} u_{k j}
$$

$$
\sigma_{j}^{2}=\frac{1}{R} \sum_{k}\left(u_{k j}-\mu_{j}\right)^{2}
$$

$$
q_{j h}=\frac{\# \text { of records in which } v_{j}=h}{R}
$$



$$
\begin{aligned}
& \text { Naïve / } \\
& \text { Gauss BC } P(Y=i \mid \mathbf{u}, \mathbf{v})=\frac{p(\mathbf{u}, \mathbf{v} \mid Y=i) P(Y=i)}{p(\mathbf{u}, \mathbf{v})} \\
& =\frac{1}{p(\mathbf{u}, \mathbf{v})} \prod_{j=1}^{q} p\left(u_{j} \mid \mu_{i j}, \sigma_{i j}^{2}\right) \quad \prod_{j=1}^{m-q} P\left(v_{j} \mid \mathbf{q}_{i j}\right) \quad P(Y=i) \\
& =\frac{1}{p(\mathbf{u}, \mathbf{v})} \prod_{j=1}^{q} N\left(u_{j} ; \mu_{i j}, \sigma_{i j}^{2}\right) \quad \prod_{j=1}^{m-q} q_{i j}\left[v_{j}\right] \quad p_{i} \\
& \mu_{i j} \quad=\text { Mean of } u_{j} \text { among records in which } \mathrm{y}=\mathrm{i} \\
& \sigma^{2}{ }_{i j} \quad=\text { Var. of } u_{j} \text { among records in which } y=i \\
& q_{i j}[h]=\text { Fraction of " } y=i^{\prime \prime} \text { records in which } v_{j}=h \\
& p_{i} \quad=\text { Fraction of records that match " } y=i \text { " }
\end{aligned}
$$





## Learn Race from 15 attributes

| Name | Model | Parameters | FracRight |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Model1 | bayesclass | density=joint submodel=gauss <br> gausstype=general | 0.391303 | $+/-$ | 0.00586792 |
| Model2 | bayesclass | density=naive <br> submodel=gauss <br> gausstype=general | 0.788686 | $+/-0.00560675$ |  |

## What you should know

- A lot of this should have just been a corollary of what you already knew
- Turning Gaussian DEs into Gaussian BCs
- Mixing Categorical and Real-Valued


## Questions to Ponder

- Suppose you wanted to create an example dataset where a BC involving Gaussians crushed decision trees like a bug. What would you do?
- Could you combine Decision Trees and Bayes Classifiers? How? (maybe there is more than one possible way)

