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1. INTRODUCTION 
 
Understanding natural language is a vast topic which includes many different approaches. All of 
these approaches have some common building blocks related to concepts inherited from the 
underlying linguistic theory. Nevertheless, the subsystems dealing with parsing, grammar rules, 
syntax checking and semantic interpretation can be highly dependent on the dynamics of the 
methodology used. 
 
Parsing and syntax checking are fundamental parts of the understanding process since without 
them being successful, the soundness of any attempt to analyze natural language would be 
debatable. The semantic interpretation is a very crucial part in this process, as the extraction of 
meaning may establish a solid basis for building further AI applications. Making inferences 
based on extracted meaning needs another capability in the system – a logic programming 
framework 
 
The logic programming based approach to natural language understanding using Prolog has 
been a topic of interest for quite some time.  The inherent capabilities of a logic programming 
language for dealing with first order logic make this approach quite powerful when making 
inferences as well as understanding the language is targeted.  
 
 
1.1 About Logic Programs and Prolog 
 
The scope of logic programming explained here refers to monotonic reasoning and definite logic 
programs.  
 
Monotonic reasoning establishes a logic system based on the assumption (or rather axiom) that 
adding knowledge to a knowledge base (set of truth sentences) does not reduce the set of 
inferences that can be made from that knowledge base. This may be a well established axiom if 
considered in a world of static truth sentences, but it can not capture interaction between 
entities. As an example, one can say “some vase has a cylindrical shape and I turned on the 
light” then the vase is still cylindrical. But if instead the sentence ended as “I dropped the vase” 
then a piece of information is gone with the broken vase. 
 
Another problem with basic knowledge representation using first order logic is observed in 
defining the effects of change. It seems that unless everything is not stated one by one for what 
changes and what does not in case of a single change in knowledge base, the completeness of 
that knowledge base is not satisfied. As an example, consider the sentence “my pencil is 12 
centimeters long”.  The system must be told that this truth does not change when “I turn the light 
on”. There must be a set of axioms in the system what is called “frame axioms” to explicitly state 
all these facts of static existence, including “my pencil’s length does not change when I turn on 
the light”. This issue is named as “the framing problem”. 
 
Definite logic programs are logic programs with no negative literals (this is, in a way related to 
the above framing problem of not being able to infer negative result by default). In a definite 
logic program all sentences have the form A� B1,B2,B3…… Bk. When a set of goals is given as 
G1,G2,G3…… Gk , the system searches for a way to satisfy it, that is, it tries to find a 
constructive proof for the existence of a set of variables and predicates which satisfy the set of 
goals. 
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The rule called SLD (Linear resolution with Selection function for Definite clauses) is how the 
system selects a goal from the set of given goals. Once the rule is selected, a continuous 
application of unification till refutation (empty sentence) constructs the proof and binds the 
variables as the proof is built up. The result is a “Yes” or “No” together with a possible set of 
variable assignments. 
  
These issues above are important to emphasize as they partly limit what can be done in a 
simple first order logic programming system with no further extensions. 
 
Prolog, the logic programming language, has some nice features to be used in NLP. It has built-
in list processing, and mostly is able to parse natural language using DCG structures (definite 
clause grammar).  Furthermore, the way structures are built using the same Prolog syntax as for 
the predicates. This makes it a perfect choice for semantic extraction. 
 
1.2 The Project  
 
The main target of this project was to build a natural language processing system which: 
 

1. is a Prolog/unification based project, 
2. has a DCG parser  
3. parses English sentences for grammatical correctness and extracts meaning 
4. checks whether the syntax is correct also looking for verb tenses and noun multiplicities   
5. has an inference engine that makes inferences to respond to input / questions asked 
6. transforms English sentences in first order logic format into Prolog clauses and 

then uses SLD resolution built in Prolog to evaluate the first order logic sentence 
7. learns a grammatically correct sentence input as a new fact - or responds if there is an 

inconsistency with the knowledge base 
 
The work presented here seems to have achieved all results except dealing with inconsistencies 
promised in 7 above. That issue in particular is related to what is presented earlier as the 
framing problem. While working on the project I recognized that handling that problem would 
need a further refined approach using situation calculus, which in turn would make the project 
impossible to complete in limited time. But that end is still open, i.e. incorporating a situation 
calculus based program into this system will enable it to respond to queries in the case when 
knowledge is attempted to be altered. 
 
The other issue is related to the scope of the project. Here my ambition was to obtain a system 
which understands first order logic given as natural language sentence. Thus the project 
concentrates more on meaning extraction and handling first order logic sentences than dealing 
with syntactic difficulties of the language. Rougly, a limited fragment of the language is used. In 
that scope some difficult issues are skipped such as: 

o verb phrases with both a dative and accusative object 
o relative clauses 
o “wh – words” other than who 
o interrogative sentences other than starting with is / are / did/ do / does 
o adjective phrases including a noun, adjective specifiers, degree words, verb specifiers 

(adverbs), 
o phrases involving numbers 

 
The set of examples provided will explain the scope of the system best. Please examine the 
sample output for a better understanding of the system’s capabilities. 



 - 4 - 

There are four categories of programs in this project. The program in the first category named 
parser.pl deals with reading English sentences into Prolog lists of tokens. This is a simple list 
processing program where the I/O subsystem is used to read input from standard input and lists 
are built. Later the list built here can be passed to others which need a list input. 
 
The second category of programs is to deal with parsing, syntax checking and conversion of 
natural language queries into first order logic. The program fol.pl parses a Prolog list of tokens 
and uses DCG formalism to load the parts of speech and verb / noun phrases into Prolog 
structures. The execution of this program results in a ‘No’ answer or a ‘Yes’ and the semantic 
representation of the given English sentence. Here, the specifiers for first order logic are used to 
build combined sentences with logical connectives. These are “a / the / every /and/ or.”  The 
determiner ‘a’ corresponds also to the existential quantifier. ‘Every’ is used for universal 
quantification, ‘and’ and ‘or’ have their natural meaning. So you may not only validate the 
grammar of a given sentence for syntax but also build first order logic phrases as you parse. All 
valid results are saved as Prolog predicates into a database called ‘world’. Nevertheless, the 
quantified sentences are not saved. They are just converted to first order logic queries. Also 
questions with is/are/does/did/do/who are not saved, but the user gets a valid answer for those 
simple questions. That means only declarative sentences are saved into the database. Later, 
inference engine will make use of that database to answer first order logic queries. Remember 
that there is no inference making in this program.  
 
The program fol.pl uses the lexicon database program lexicon.pl for checking parts of speech. 
That lexicon is a long list of Prolog ground predicates. This is where correct syntax including 
tense and multiplicity is stored.  
 
The programs of third category are designed to answer queries of first order logic, given an 
input query in the correct format. For example the correct format for universal quantification is 
every(_G469, man(_G469)=>husband(_G469)).  That should have been already produced by 
the fol.pl program above issuing a command such as: fol(S,[every, man, is, a, husband]). The 
program query-dbase.pl does this inference. It accepts all valid forms of first order logic queries 
and checks the database ‘world’ depending on the meaning of the query, quantifiers, 
connectives, etc. and answers it.  The other program, world.pl is the initial Prolog database 
representing the world as mentioned above. 
  
 
 
 
 
2. ALGORITHMS, METHODS AND DATA STRUCTURES 
 
General Information: 
 
To give a complexity measure for a Prolog code in terms of the operational semantics 
procedural programs is quite difficult. But I can say that the complexity increases 
combinatorically as new facts are added to the database, since each new fact increases the 
possibilities of goal satisfaction. As new combinations are possible and Prolog has to search 
through all, no exact prediction can be made. Nevertheless, Prolog has its own ways to deal 
with complexity. The ‘cuts’ were used whenever there was an infinite iteration or when pruning 
the search tree would not affect the search results. Another technique of reordering the goals 
was used to avoid creation of useless sub-goals before a match is hit. 
 



 - 5 - 

Program parser.pl: 
 
This program parses a sentence word by word and each word letter by letter reducing input 
read from standard input and skipping space. It uses forward recursion with the lists so the 
complexity of the program is O( non white space characters in input). 
 
 
Programs world.pl and lexicon.pl: 
 
Program world.pl stores an initial set of facts. This is the initial knowledge base and lexicon.pl is 
the grammar checking base. These programs are database-like programs holding variants of a 
set of predicates, so the complexity related to these programs may be considered as the 
complexity when a call is made to those predicates from outside. Since Prolog reads every line 
from top to bottom until it finds a match, the complexity of that call will be linear in number of 
lines in the database.  
 
 
Program fol.pl 
 
One of the key ideas used here is to make use of the built-in DCG structure to make difference 
lists. If everything was made through using append calls, the program could take enormous time 
to finish due to the additional goals generated by Prolog which would be wasted as the search 
proceeds in the SLD search tree. So DCG code s(S) --> np(NP),vp(VP) (an oversimplified 
fragment) is actually s(S,X) :- np(S,Y),vp(Y,X) in Prolog. If needed, additional Prolog commands 
may be added in DCG comma separated list on the right of arrow, but they must be in curly 
braces. That means a call to the Prolog system itself rather than searching to satisfy a 
difference list partitioning of the input. Once translated, when accessed, these difference lists 
show a linear complexity in the length of the sentence in terms of the number of words. 
 
The most innovative key idea used here is the lambda calculus implementation over Prolog. In 

lambda calculus λx.f(x) defines a function and an argument ‘x’.  In Prolog, properties, or 
predicates are expressed as property(X). Both have the power to extract the meaning of a 
phrase if the semantic structure is thought as a variable or a constant having a property. For the 
lambda calculus, later when the built function is required to be applied on an argument, it is 

shown as λx.f(x) (argument). This is called Beta reduction. The equivalent to this is unification in 
Prolog where the expression X, property(X), binds X to have the true value for the predicate 
‘property’. If there is more than one variable in lambda calculus, then a partial reduction is done. 

For example λy.λx.f(x, y) when reduced by an argument1 becomes λx.f(x, argument1). So if 
symbolic reduction can be handled in Prolog, then that means the difficult to implement lambda 
calculus can be implemented and while the sentence is parsed, and the partially initialized 
structures may be kept in list of Prolog goals still to be reduced. What this means is that we 
can both parse the sentence and incrementally build the semantic structures to hold 
meaning. This idea is used extensively in all predicates. Generally the determiner, the quantifier, 
the verb or the adjective is the root of the semantic structure. When abstracted from that 
notation, all program sentences are well known Prolog sentences. So search complexity is as 
one that would occur in such a program, bearing in mind the precautions applied as explained 
above. One issue specific to grammar handling is left recursion. The best solution to handle that 
issue is to create intermediate goals when an infinite iteration occurs due to left recursion. But 
again, these are extreme cases of infinite iterations. A feature could have been added to the 
program to guess a general case for most of the tenses or plurals. This rule could first try to see 
if it is in the irregular verbs or nouns list, if not, s/es for present singular and d/ed for past could 
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be derived automatically. Similar for the plural of the nouns applies. Then the loaded lexicon 
could contain just the base word and hence search complexity could be reduced. But that idea 
appeared by the time I was writing this report.  
 
This program was the most difficult of all because I had to decide on the extracted form of 
semantic content and on how to limit the scope of queries. A sample sentence like ‘a husband is 
a man.’ gives ‘some(_G437, husband(_G437)&man(_G437))’ , but also the query  ‘is a husband 
a man.’ gives the same result. On the other hand, ‘Larry is good’ gives good(‘Larry’) but the 
question ‘who is good’ results in ‘good(_G416)’.  Remember that only non-quantified and at the 
same time simple declarative sentences (no connectives) are stored in the ‘world’ database 
when the program is executed.  
 
Prolog offers some predicates such that one can build predicates from within the program and 
call them. The predicate =.. is used to construct temporary predicates stored in variables and 
they are used to build more complex structures. When finished, only the complete structure is 
stored and those kept in variables are gone. An excellent example to predicate construction is 
building noun/verb/adjective phrases from data in lexicon before beta reduction is applied on 
those new predicates. 
 
The overall complexity of dealing with exceptional cases and the necessity to achieve 
completeness of the system within the bounds of the language fragment used forced me to deal 
with rules piece by piece sometimes. That is why you may notice a rule is repeated sometimes 
to deal with exceptional cases. 
 
 
Program query-dbase.pl: 
 
This program again makes extensive use of structure building predicates and when necessary 
uses those predicates. The core of the program is based on symbolic manipulation. Quantifiers 
and connectives are parsed and interpreted, then validity is checked by calling components as 
directed by the semantics of the given query (every / some / or / and). The method used for 
existential quantification is enforcing a double negation. This means “if the predicate formed 
from the query does not fail”. The universal quantification does almost the same. But before that 
the program forms a domain of true predicates. The universally quantified sentence is true if 
every predicate in the domain with the same name as in quantification is true. The parsing of 
query into sub-queries is linear operation in terms of Prolog terms and connectives/quantifiers. 
A simple query may not take much time to answer if the world database is not too big. On the 
other hand a universally quantified sentence requires an exhaustive search so this is the most 
demanding query of all. 
 
 
 
3. EXAMPLES OF OUTPUT 
 
The examples in this section are of utmost importance to understand the limits of the system. 
When there is a negative reply because of a grammatical mistake that will be emphasized. 
Other failures must serve as indications of cases where the system breaks down. The sample 
input sentences are chosen to give a complete set of examples. 
In the sample executions below, first the command issued is shown and then the response. The 
first line is the actual command and the line which starts with |: is where Prolog is waiting for an 
input.  
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The first part below is related to the program fol.pl. Here you will see how the meaning is 
obtained and stored with the outcome of a first order logic sentence. 
 
Please remember that you have to end every sentence with a full stop even if it is a 
question and must not use any other punctuation anywhere else. 
 
 
___SEMANTIC EXTRACTION AND TRANSLATION INTO FIRST ORDER LOGIC ____ 
 
1- Declarative ‘is’ sentence with regular nouns: 
 
parse(X),fol(S,X). 
|: a husband is a man. 
 
 
X = [a, husband, is, a, man] 
S = some(_G431, husband(_G431)&man(_G431)) 
 
Yes 
 
?- parse(X),fol(S,X). 
|: the weather is cold. 
 
 
X = [the, weather, is, cold] 
S = the(_G446, weather(_G446), cold(_G446))  
 
Yes 
 
 
?- parse(X),fol(S,X). 
|: the sandwiches are good. 
 
 
X = [the, sandwiches, are, good] 
S = the(_G458, sandwiches(_G458), good(_G458))  
 
Yes 
 
Observe the use of adjective. 
 
 
BUT NOT: 
 
?- parse(X),fol(S,X). 
|: weather is cold. 
 
 
No  (missing determiner) 
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OR NOT: 
 
?- parse(X),fol(S,X). 
|: the brother is a good man. 
 
No 
 
The reason for this failure is that this sentence must assert that the brother is a man and the 
brother is good. That complex expression could not be handled by the system. It is a missing 
feature. 
 
2- Declarative ‘is’ sentence with regular plural nouns: 
 
?- parse(X),fol(S,X). 
|: husbands are men. 
 
No 
 
The reason this is not handled was the difficulty in storing the semantic value extracted from this 
sentence. It is ambiguous. Are all husbands men or some are, some aren’t? 
 
 
3- Declarative ‘is’ sentence with proper nouns: 
 
?- parse(X),fol(S,X). 
|: Diane is a waiter. 
 
 
X = ['Diane', is, a, waiter] 
S = waiter('Diane')  
 
Yes 
 
Notice that Diane is quoted. That is you write a proper noun with a capital letter and parser 
program turns it into a quoted atom. 
 
 
BUT (wrong syntax): 
 
?- parse(X),fol(S,X). 
|: Diane is a waiters. 
 
 
No 
 
4- Declarative sentence with intransitive verb and regular nouns: 
 
?- parse(X),fol(S,X). 
|: a man laughed. 
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X = [a, man, laughed] 
S = some(_G422, man(_G422)&laughed(_G422))  
 
Yes 
 
 
BUT (wrong syntax): 
 
?- parse(X),fol(S,X). 
|: a man laugh. 
 
No   
 
5- Declarative sentence with transitive verb and regular nouns as subject and object: 
 
?- parse(X),fol(S,X). 
|: a woman wants a car. 
 
X = [a, woman, wants, a, car] 
S = some(_G440, woman(_G440)&some(_G478, car(_G478)&wants(_G440, _G478)))  
 
Yes 
 
BUT (wrong syntax): 
 
?- parse(X),fol(S,X). 
|: a girls wants a car. 
 
No 
 
Similarly (missing article), 
 
16 ?- parse(X),fol(S,X). 
|: a woman wants car. 
 
No  
 
 
6- Declarative sentence with transitive verb and proper nouns as subject and object: 
 
?- parse(X),fol(S,X). 
|: Jim loves Cathy. 
X = ['Jim', loves, 'Cathy'] 
S = loves('Jim', 'Cathy')  
 
Yes 
 
 
7- Declarative sentence with transitive verb and proper noun as subject and regular noun 
as object: 
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?- parse(X),fol(S,X). 
|: Tom closed the door. 
 
X = ['Tom', closed, the, door] 
S = the(_G442, door(_G442), closed('Tom', _G442))  
 
Yes 
 
?- parse(X),fol(S,X). 
|: women want car. 
 
No    (determiners missing) 
 
 
?- parse(X),fol(S,X). 
|: women want the car. 
 
No (determiner of subject missing) 
  
 
?- parse(X),fol(S,X). 
|: the women want the car. 
 
X = [the, women, want, the, car] 
S = the(_G452, women(_G452), the(_G488, car(_G488), want(_G452, _G488)))  
 
Yes 
 
?- parse(X),fol(S,X). 
|: the women want the cars. 
 
X = [the, women, want, the, cars] 
S = the(_G455, women(_G455), the(_G491, cars(_G491), want(_G455, _G491)))  
 
Yes 
Observe how the semantic structure has the determiner as the root. 
 
8- Declarative sentence with transitive verb and regular noun as subject and proper noun 
as object: 
 
?- parse(X),fol(S,X). 
|: a man kissed Sue. 
 
 
X = [a, man, kissed, 'Sue'] 
S = some(_G431, man(_G431)&kissed(_G431, 'Sue'))  
 
Yes 
 
OR similarly: 
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?- parse(X),fol(S,X). 
|: the  sisters love Sue. 
 
X = [the, sisters, love, 'Sue'] 
S = the(_G443, sisters(_G443), love(_G443, 'Sue'))  
 
Yes 
 
BUT NOT (missing determiner): 
 
?- parse(X),fol(S,X). 
|:   sisters love Sue. 
 
No 
 
 
9- Yes/No question with subject regular noun and object regular noun: 
 
?- parse(X),fol(S,X). 
|: is a wife a woman. 
 
X = [is, a, wife, a, woman] 
S = some(_G441, wife(_G441)&woman(_G441))  
 
Yes 
 
 
?- parse(X),fol(S,X). 
|: are the men the waiters. 
 
X = [are, the, men, the, waiters] 
S = the(_G459, men(_G459), waiters(_G459))  
 
Yes 
 
BUT NOT: 
 
?- parse(X),fol(S,X). 
|: is the wives a woman. 
 
No 
 
OR NOT: 
 
?- parse(X),fol(S,X). 
|: are the men waiters. 
 
No   (missing determiner) 
 
10- Yes/No question with subject proper noun and object regular noun: 
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?- parse(X),fol(S,X). 
|: is John  a brother. 
 
X = [is, 'John', a, brother] 
S = brother('John')  
 
Yes 
 
BUT NOT:  
 
?- parse(X),fol(S,X). 
|: is John  Bill. 
 
No   
 
11- Do-word question with proper noun and intransitive verb: 
 
?- parse(X),fol(S,X). 
|: did Larry sleep. 
 
X = [did, 'Larry', sleep] 
S = sleep('Larry')  
 
Yes 
 
BUT NOT: 
 
?- parse(X),fol(S,X). 
|: did Larry sleeps. 
 
No 
 
OR NOT: 
 
?- parse(X),fol(S,X). 
|: does Larry slept. 
 
No 
 
12- Do-word question with regular noun and intransitive verb: 
 
?- parse(X),fol(S,X). 
|: does a boy sleep. 
 
X = [does, a, boy, sleep] 
S = some(_G438, boy(_G438)&sleep(_G438))  
 
Yes 
 
?- parse(X),fol(S,X). 
|: do the brothers run. 
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X = [do, the, brothers, run] 
S = the(_G447, brothers(_G447), run(_G447))  
 
Yes 
 
 
BUT NOT 
 
?- parse(X),fol(S,X). 
|: do the brothers runs. 
 
No 
 
 
13- Do-word question with proper nouns as subject and object and transitive verb: 
 
?- parse(X),fol(S,X). 
|: did Larry love Sue. 
 
 
X = [did, 'Larry', love, 'Sue'] 
S = love('Larry', 'Sue')  
 
Yes 
 
14- Do-word question with proper nouns as subject and regular noun as  object and 
transitive verb: 
 
?- parse(X),fol(S,X). 
|: did Larry read a book. 
 
X = [did, 'Larry', read, a, book] 
S = some(_G455, book(_G455)&read('Larry', _G455))  
 
Yes 
 
15- Do-word question with regular nouns as subject and object and transitive verb: 
 
?- parse(X),fol(S,X). 
|: did a girl love the hamburgers. 
 
X = [did, a, girl, love, the, hamburgers] 
S = some(_G483, girl(_G483)&love(_G483, _G518)) 
 
Yes 
 
?- parse(X),fol(S,X). 
|: did the girls love the hamburgers. 
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X = [did, the, girls, love, the, hamburgers] 
S = the(_G492, girls(_G492), love(_G492, _G525))  
 
Yes 
 
BUT NOT: 
 
?- parse(X),fol(S,X). 
|: did the girls love hamburgers. 
 
No 
 
Observe that again there is a missing determiner for object so it is not clear some hamburgers 
or all hamburgers or the hamburgers are mentioned. 
 
16- Do-word question with regular noun as subject and proper noun as object and 
transitive verb: 
 
?- parse(X),fol(S,X). 
|: did the girls love Tom. 
 
X = [did, the, girls, love, 'Tom'] 
S = the(_G459, girls(_G459), love(_G459, 'Tom'))  
 
Yes 
 
17- Who question is- verb, regular noun 
 
?- parse(X),fol(S,X). 
|: who is a mother. 
 
X = [who, is, a, mother] 
S = mother(_G438)  
 
Yes 
 
?- parse(X),fol(S,X). 
|: who are the husbands. 
 
X = [who, are, the, husbands] 
S = husbands(_G446)  
 
Yes 
 
?- parse(X),fol(S,X). 
|: who are good. 
 
X = [who, are, good] 
S = good(_G422)  
 
Yes 
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Observe how Prolog inserted a variable in the predicate. 
 
18- Who – intransitive verb, regular noun 
 
?- parse(X),fol(S,X). 
|: who slept. 
 
X = [who, slept] 
S = slept(_G413)  
 
Yes 
 
19- Who – transitive verb, regular nouns as subject and object 
 
?- parse(X),fol(S,X). 
|: who wants a house. 
 
 
X = [who, wants, a, house] 
S = some(_G440, house(_G440)&wants(_G437, _G440))  
 
Yes 
 
?- parse(X),fol(S,X). 
|: who ate the sandwiches. 
 
 
X = [who, ate, the, sandwiches] 
S = the(_G455, sandwiches(_G455), ate(_G452, _G455))  
 
Yes 
 
Observe how the determiner acts as the root of the semantic structure. 
 
BUT NOT: 
 
?- parse(X),fol(S,X). 
|: who does eat a sandwich. 
 
 
No 
That type of question is not handled. It is a missing feature. 
 
20- Who – transitive verb, regular noun as subject and proper noun as object 
 
?- parse(X),fol(S,X). 
|: who knew Cathy. 
 
 
X = [who, knew, 'Cathy'] 
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S = knew(_G428, 'Cathy')  
 
Yes 
 
20- Connectives and logical operators; various sentences 
This part is the most exiting experiment before the next. Here we get FOL sentences as 
bindings. 
 
 
?- parse(X),fol(S,X). 
|: Tom loves a woman and the weather is cold. 
 
 
X = ['Tom', loves, a, woman, and, the, weather, is, cold] 
S = some(_G514, woman(_G514)&loves('Tom', _G514))&the(_G577, weather(_G577), 
cold(_G577))  
 
Yes 
 
 
?- parse(X),fol(S,X). 
|: every boy loves a girl and a man eats a hamburger. 
 
 
X = [every, boy, loves, a, girl, and, a, man, eats|...] 
S = every(_G536, boy(_G536)=>some(_G574, girl(_G574)&loves(_G536, 
_G574)))&some(_G637, man(_G637)&some(_G675, hamburger(_G675)&eats(_G637, 
_G675)))  
 
Yes 
 
 
?- parse(X),fol(S,X). 
|: every worker wanted a house or  a student read a book. 
 
 
X = [every, worker, wanted, a, house, or, a, student, read|...] 
S = every(_G533, worker(_G533)=>some(_G571, house(_G571)&wanted(_G533, 
_G571)))\/some(_G634, student(_G634)&some(_G672, book(_G672)&read(_G634, _G672)))  
 
Yes 
 
?- parse(X),fol(S,X). 
|: every man loves every woman. 
 
 
X = [every, man, loves, every, woman] 
S = every(_G458, man(_G458)=>every(_G496, woman(_G496)=>loves(_G458, _G496))) 
 

________________ 
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WORKING WITH FIRST ORDER LOGIC 
 
Now the examples will show how the system interprets logic syntax. 
 
Additionally we must use satisfy(world,S) predicate form quer-dbase.pl here.  
 
Initially this is the world: 
 
world(woman('Cathy')). 
world(woman('Sue')). 
world(man('Jim')). 
world(man('John')). 
world(man('Tom')). 
world(man('Larry')). 
world(woman('Diane')). 
 
world(loves('Jim','Cathy')). 
world(loves('Tom','Diane')). 
world(loves('Larry','Diane')). 
 
 
world(wants('Bill',house)). 
world(wants('Maggie',house)). 
 
So by examining the situation, we can’t say that every man loves a woman. 
 
?- parse(X),fol(S,X),satisfy(world,S). 
|: every man loves a woman. 
 
 
No 
 
Let’s add the knowledge that John also loves a woman. 
?- parse(X),fol(S,X). 
|: John loves Sue. 
 
X = ['John', loves, 'Sue'] 
S = loves('John', 'Sue')  
 
Yes 
 
Now: 
 
?- parse(X),fol(S,X),satisfy(world,S). 
|: every man loves a woman. 
 
 
X = [every, man, loves, a, woman] 
S = every(_G566, man(_G566)=>some(_G604, woman(_G604)&loves(_G566, _G604)))  
 
Yes 
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As observed above, the added fact by the execution of : 
 
?- parse(X),fol(S,X). 
|: John loves Sue. 
 
enabled us to get a positive result for the universally quantified sentence. 
 
There is still an ambiguity in this query which the system can not handle. Is the referenced 
woman a unique woman or for every man there is a woman but not necessarily the same one? 
 
We humans can not answer this either. But the way the system handles it is clear from the 
context. The system does not look for uniqueness, it is just any woman. 
 
 
Similarly let’s try: 
 
 
?- parse(X),fol(S,X),satisfy(world,S). 
|: every man loves every woman. 
 
 
No 
 
And add the missing facts: (one by one for them to be included in the database) 
 
?- parse(X),fol(S,X). 
|: John loves Diane. 
 
X = ['John', loves, 'Diane'] 
S = loves('John', 'Diane')  
 
Yes 
 
?- parse(X),fol(S,X). 
|: John loves Cathy. 
 
X = ['John', loves, 'Cathy'] 
S = loves('John', 'Cathy')  
 
Yes 
?- parse(X),fol(S,X). 
|: Larry loves Cathy. 
X = ['Larry', loves, 'Cathy'] 
S = loves('Larry', 'Cathy')  
 
Yes 
 
?- parse(X),fol(S,X). 
|: Larry loves Sue. 
 
X = ['Larry', loves, 'Sue'] 
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S = loves('Larry', 'Sue')  
 
Yes 
 
?- parse(X),fol(S,X). 
|: Tom loves Sue. 
 
X = ['Tom', loves, 'Sue'] 
S = loves('Tom', 'Sue')  
 
Yes 
 
?- parse(X),fol(S,X). 
|: Tom loves Cathy. 
 
X = ['Tom', loves, 'Cathy'] 
S = loves('Tom', 'Cathy')  
 
Yes 
 
?- parse(X),fol(S,X). 
|: Jim loves Sue. 
 
 
X = ['Jim', loves, 'Sue'] 
S = loves('Jim', 'Sue')  
 
Yes 
?- parse(X),fol(S,X). 
|: Jim loves Diane. 
 
X = ['Jim', loves, 'Diane'] 
S = loves('Jim', 'Diane')  
 
Yes 
 
Amazingly, now the query is successful: 
 
?- parse(X),fol(S,X),satisfy(world,S). 
|: every man loves every woman. 
 
 
X = [every, man, loves, every, woman] 
S = every(_G584, man(_G584)=>every(_G622, woman(_G622)=>loves(_G584, _G622)))  
 
Yes 
 
 
But look at the following example: 
 
?- parse(X),fol(S,X),satisfy(world,S). 
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|: Bill wants a house and Maggie wants a car. 
 
 
X = ['Bill', wants, a, house, and, 'Maggie', wants, a, car] 
S = some(_G622, house(_G622)&wants('Bill', _G622))&some(_G687, 
car(_G687)&wants('Maggie', _G687))  
 
Yes 
 
 
What happened above? 
 
The only predicate in the world database about Maggie was : world(wants('Maggie',house)). 
 
The problem is that while fol(S,X), executed, as soon as it saw a proper name as Maggie, it 
appended the fact it learned to the database. 
 
To check:  
 
?- world(some(_G687, car(_G687)&wants('Maggie', _G687))). 
 
_G687 = _G512 ;   (so it was stored in the knowledge base) 
 
No (No here appears because I pressed semicolon to look for other results. It is not a failure) 
 
This can be considered as a good side effect if only FOL queries are important. But on the other 
hand it may be considered as a defect since the way the knowledge stored is different from that 
of the world database. 
 
 
 
4. PROGRAM CODE 
 
Please see the attached printouts as it was not very practical to include code here because of 
page orientation. 
 
 
 
5. REFERENCES 
 
Bratko, I. (2001). Prolog Programming for Artificial Intelligence (3rd ed.). Harlow, England: 
Pearson Education Limited.  
 
Brewka, G., & Dix, J. (1997). Knowledge representation with logic programs.  
Retrieved from  http://ii.fmph.uniba.sk/~sefranek/cudzie/bd.pdf.  
 
Clocksin, W. F., & Mellish, C. S. (2003). Programming in Prolog (5th ed.). Berlin, Germany: 
Springer- Verlag. 
 
Cooper, R., Lewin, I., & Black, A. W. (1993). Prolog and natural language semantics.  
Retrieved from http://www.ling.gu.se/~cooper/papers/comp-sem.pdf.  



 - 21 -

 
Lloyd, J. W. (1984). Foundations of Logic Programming. Berlin, Germany: Springer-Verlag. 
 
Nilsson, U., & Maluszynski, J. (2000). Logic, Programming and Prolog (2nd ed.). Linkoping, 
Sweden: Linkoping University. 
 
Nugues, P. M. (2006). An Introduction to Language Processing with Perl and Prolog: An Outline 
of  Theories, Implementation, and Application with Special Consideration of English, French, 
and German. Gabbay, M., &  Siekmann, J. (ed.). Heidelberg, Germany: Springer-Verlag.   
 
O’Keefe, R.. A. (1990). The Craft of Prolog. Cambridge, MA: The MIT Press .  
 
Pereira, F. C. N., & Shieber, S. M. (2002). Prolog and Natural-Language Analysis.  
Retrieved from  http://www.mtome.com/Publications/PNLA/prolog-digital.pdf. 
 
 
 
6. APPENDIX – Project/Program Systems Manual 
 
 
The whole set of programs must be in the same directory. Copy all files to some directory. 
Change to that directory. On a Windows system changing to that directory is meaningless since 
it is GUI based, just start the program. 
 
These programs were developed on SWI-Prolog. So please open up an SWI-Prolog session 
(from the directory where the files are copied to – if using Unix). 
 
On a Unix system, type pl or swi-pl depending on your installation, if unsure issue command 
“apropos prolog” and follow the information.  
 
Then type consult('fol.pl'). at the Prolog interpreter prompt. This file will also load the other 4 
files needed. Do not get surprised by the amount of warnings. They occur because Prolog 
thinks some variables are useless, but the underlying symbolic manipulation for lambda calculus 
needs them in place. 
 
 
 
Steps of increasing complexity: 
 
To see how the parser works alone, type parser.  at the prompt. This will prompt you showing |: 
sign. Type your English sentence without using any commas or other punctuation symbols and 
always end the sentence with a full stop—even questions. 
 
Then you will get the Prolog list filled with your words and anything that starts with capital letter 
will be single quoted. 
 
To see the translation using the DCG grammar parser and FOL translator, type : 
parse(X),fol(S,X).  Then the same prompt for input appears and when you type your sentences, 
if they are syntactically valid, a query of FOL will be formed and bound to the S variable. Follow 
section 3 examples for further details. 
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To see how the inference engine works, type: parse(X),fol(S,X),satisfy(world,S).  
This will read your sentence, parse it, translate into FOL, and query the database world.pl. For 
further details, see the examples at the end of section 3. 
 
If you need more facts, you can write them into world.pl. Follow the same format for predicates. 
Same applies to lexicon.pl. If you need to extend the lexicon, write the facts there. 
 
Do not rename the two knowledge base files unless you modify fol.pl fie to consult the new files. 
 
 
 


