

CSE6390E PROJECT REPORT

HALUK MADENCIOGLU

April 20, 2010

This report describes the design and implementation of a system of programs to deal with
parsing natural language, building semantic structures and making first order logic inferences.

 - 1 -

TABLE OF CONTENTS

 Page

1. INTRODUCTION 2

1.1 About Logic Programs and Prolog 2

1.2 The Project 3

2. ALGORITHMS, METHODS AND DATA STRUCTURES 4

3. EXAMPLES OF OUTPUT 6

4. PROGRAM CODE 20

5. REFERENCES 20

6. APPENDIX – Project/Program Systems Manual 21

 - 2 -

1. INTRODUCTION

Understanding natural language is a vast topic which includes many different approaches. All of
these approaches have some common building blocks related to concepts inherited from the
underlying linguistic theory. Nevertheless, the subsystems dealing with parsing, grammar rules,
syntax checking and semantic interpretation can be highly dependent on the dynamics of the
methodology used.

Parsing and syntax checking are fundamental parts of the understanding process since without
them being successful, the soundness of any attempt to analyze natural language would be
debatable. The semantic interpretation is a very crucial part in this process, as the extraction of
meaning may establish a solid basis for building further AI applications. Making inferences
based on extracted meaning needs another capability in the system – a logic programming
framework

The logic programming based approach to natural language understanding using Prolog has
been a topic of interest for quite some time. The inherent capabilities of a logic programming
language for dealing with first order logic make this approach quite powerful when making
inferences as well as understanding the language is targeted.

1.1 About Logic Programs and Prolog

The scope of logic programming explained here refers to monotonic reasoning and definite logic
programs.

Monotonic reasoning establishes a logic system based on the assumption (or rather axiom) that
adding knowledge to a knowledge base (set of truth sentences) does not reduce the set of
inferences that can be made from that knowledge base. This may be a well established axiom if
considered in a world of static truth sentences, but it can not capture interaction between
entities. As an example, one can say “some vase has a cylindrical shape and I turned on the
light” then the vase is still cylindrical. But if instead the sentence ended as “I dropped the vase”
then a piece of information is gone with the broken vase.

Another problem with basic knowledge representation using first order logic is observed in
defining the effects of change. It seems that unless everything is not stated one by one for what
changes and what does not in case of a single change in knowledge base, the completeness of
that knowledge base is not satisfied. As an example, consider the sentence “my pencil is 12
centimeters long”. The system must be told that this truth does not change when “I turn the light
on”. There must be a set of axioms in the system what is called “frame axioms” to explicitly state
all these facts of static existence, including “my pencil’s length does not change when I turn on
the light”. This issue is named as “the framing problem”.

Definite logic programs are logic programs with no negative literals (this is, in a way related to
the above framing problem of not being able to infer negative result by default). In a definite
logic program all sentences have the form A� B1,B2,B3…… Bk. When a set of goals is given as
G1,G2,G3…… Gk , the system searches for a way to satisfy it, that is, it tries to find a
constructive proof for the existence of a set of variables and predicates which satisfy the set of
goals.

 - 3 -

The rule called SLD (Linear resolution with Selection function for Definite clauses) is how the
system selects a goal from the set of given goals. Once the rule is selected, a continuous
application of unification till refutation (empty sentence) constructs the proof and binds the
variables as the proof is built up. The result is a “Yes” or “No” together with a possible set of
variable assignments.

These issues above are important to emphasize as they partly limit what can be done in a
simple first order logic programming system with no further extensions.

Prolog, the logic programming language, has some nice features to be used in NLP. It has built-
in list processing, and mostly is able to parse natural language using DCG structures (definite
clause grammar). Furthermore, the way structures are built using the same Prolog syntax as for
the predicates. This makes it a perfect choice for semantic extraction.

1.2 The Project

The main target of this project was to build a natural language processing system which:

1. is a Prolog/unification based project,
2. has a DCG parser
3. parses English sentences for grammatical correctness and extracts meaning
4. checks whether the syntax is correct also looking for verb tenses and noun multiplicities
5. has an inference engine that makes inferences to respond to input / questions asked
6. transforms English sentences in first order logic format into Prolog clauses and

then uses SLD resolution built in Prolog to evaluate the first order logic sentence
7. learns a grammatically correct sentence input as a new fact - or responds if there is an

inconsistency with the knowledge base

The work presented here seems to have achieved all results except dealing with inconsistencies
promised in 7 above. That issue in particular is related to what is presented earlier as the
framing problem. While working on the project I recognized that handling that problem would
need a further refined approach using situation calculus, which in turn would make the project
impossible to complete in limited time. But that end is still open, i.e. incorporating a situation
calculus based program into this system will enable it to respond to queries in the case when
knowledge is attempted to be altered.

The other issue is related to the scope of the project. Here my ambition was to obtain a system
which understands first order logic given as natural language sentence. Thus the project
concentrates more on meaning extraction and handling first order logic sentences than dealing
with syntactic difficulties of the language. Rougly, a limited fragment of the language is used. In
that scope some difficult issues are skipped such as:

o verb phrases with both a dative and accusative object
o relative clauses
o “wh – words” other than who
o interrogative sentences other than starting with is / are / did/ do / does
o adjective phrases including a noun, adjective specifiers, degree words, verb specifiers

(adverbs),
o phrases involving numbers

The set of examples provided will explain the scope of the system best. Please examine the
sample output for a better understanding of the system’s capabilities.

 - 4 -

There are four categories of programs in this project. The program in the first category named
parser.pl deals with reading English sentences into Prolog lists of tokens. This is a simple list
processing program where the I/O subsystem is used to read input from standard input and lists
are built. Later the list built here can be passed to others which need a list input.

The second category of programs is to deal with parsing, syntax checking and conversion of
natural language queries into first order logic. The program fol.pl parses a Prolog list of tokens
and uses DCG formalism to load the parts of speech and verb / noun phrases into Prolog
structures. The execution of this program results in a ‘No’ answer or a ‘Yes’ and the semantic
representation of the given English sentence. Here, the specifiers for first order logic are used to
build combined sentences with logical connectives. These are “a / the / every /and/ or.” The
determiner ‘a’ corresponds also to the existential quantifier. ‘Every’ is used for universal
quantification, ‘and’ and ‘or’ have their natural meaning. So you may not only validate the
grammar of a given sentence for syntax but also build first order logic phrases as you parse. All
valid results are saved as Prolog predicates into a database called ‘world’. Nevertheless, the
quantified sentences are not saved. They are just converted to first order logic queries. Also
questions with is/are/does/did/do/who are not saved, but the user gets a valid answer for those
simple questions. That means only declarative sentences are saved into the database. Later,
inference engine will make use of that database to answer first order logic queries. Remember
that there is no inference making in this program.

The program fol.pl uses the lexicon database program lexicon.pl for checking parts of speech.
That lexicon is a long list of Prolog ground predicates. This is where correct syntax including
tense and multiplicity is stored.

The programs of third category are designed to answer queries of first order logic, given an
input query in the correct format. For example the correct format for universal quantification is
every(_G469, man(_G469)=>husband(_G469)). That should have been already produced by
the fol.pl program above issuing a command such as: fol(S,[every, man, is, a, husband]). The
program query-dbase.pl does this inference. It accepts all valid forms of first order logic queries
and checks the database ‘world’ depending on the meaning of the query, quantifiers,
connectives, etc. and answers it. The other program, world.pl is the initial Prolog database
representing the world as mentioned above.

2. ALGORITHMS, METHODS AND DATA STRUCTURES

General Information:

To give a complexity measure for a Prolog code in terms of the operational semantics
procedural programs is quite difficult. But I can say that the complexity increases
combinatorically as new facts are added to the database, since each new fact increases the
possibilities of goal satisfaction. As new combinations are possible and Prolog has to search
through all, no exact prediction can be made. Nevertheless, Prolog has its own ways to deal
with complexity. The ‘cuts’ were used whenever there was an infinite iteration or when pruning
the search tree would not affect the search results. Another technique of reordering the goals
was used to avoid creation of useless sub-goals before a match is hit.

 - 5 -

Program parser.pl:

This program parses a sentence word by word and each word letter by letter reducing input
read from standard input and skipping space. It uses forward recursion with the lists so the
complexity of the program is O(non white space characters in input).

Programs world.pl and lexicon.pl:

Program world.pl stores an initial set of facts. This is the initial knowledge base and lexicon.pl is
the grammar checking base. These programs are database-like programs holding variants of a
set of predicates, so the complexity related to these programs may be considered as the
complexity when a call is made to those predicates from outside. Since Prolog reads every line
from top to bottom until it finds a match, the complexity of that call will be linear in number of
lines in the database.

Program fol.pl

One of the key ideas used here is to make use of the built-in DCG structure to make difference
lists. If everything was made through using append calls, the program could take enormous time
to finish due to the additional goals generated by Prolog which would be wasted as the search
proceeds in the SLD search tree. So DCG code s(S) --> np(NP),vp(VP) (an oversimplified
fragment) is actually s(S,X) :- np(S,Y),vp(Y,X) in Prolog. If needed, additional Prolog commands
may be added in DCG comma separated list on the right of arrow, but they must be in curly
braces. That means a call to the Prolog system itself rather than searching to satisfy a
difference list partitioning of the input. Once translated, when accessed, these difference lists
show a linear complexity in the length of the sentence in terms of the number of words.

The most innovative key idea used here is the lambda calculus implementation over Prolog. In

lambda calculus λx.f(x) defines a function and an argument ‘x’. In Prolog, properties, or
predicates are expressed as property(X). Both have the power to extract the meaning of a
phrase if the semantic structure is thought as a variable or a constant having a property. For the
lambda calculus, later when the built function is required to be applied on an argument, it is

shown as λx.f(x) (argument). This is called Beta reduction. The equivalent to this is unification in
Prolog where the expression X, property(X), binds X to have the true value for the predicate
‘property’. If there is more than one variable in lambda calculus, then a partial reduction is done.

For example λy.λx.f(x, y) when reduced by an argument1 becomes λx.f(x, argument1). So if
symbolic reduction can be handled in Prolog, then that means the difficult to implement lambda
calculus can be implemented and while the sentence is parsed, and the partially initialized
structures may be kept in list of Prolog goals still to be reduced. What this means is that we
can both parse the sentence and incrementally build the semantic structures to hold
meaning. This idea is used extensively in all predicates. Generally the determiner, the quantifier,
the verb or the adjective is the root of the semantic structure. When abstracted from that
notation, all program sentences are well known Prolog sentences. So search complexity is as
one that would occur in such a program, bearing in mind the precautions applied as explained
above. One issue specific to grammar handling is left recursion. The best solution to handle that
issue is to create intermediate goals when an infinite iteration occurs due to left recursion. But
again, these are extreme cases of infinite iterations. A feature could have been added to the
program to guess a general case for most of the tenses or plurals. This rule could first try to see
if it is in the irregular verbs or nouns list, if not, s/es for present singular and d/ed for past could

 - 6 -

be derived automatically. Similar for the plural of the nouns applies. Then the loaded lexicon
could contain just the base word and hence search complexity could be reduced. But that idea
appeared by the time I was writing this report.

This program was the most difficult of all because I had to decide on the extracted form of
semantic content and on how to limit the scope of queries. A sample sentence like ‘a husband is
a man.’ gives ‘some(_G437, husband(_G437)&man(_G437))’ , but also the query ‘is a husband
a man.’ gives the same result. On the other hand, ‘Larry is good’ gives good(‘Larry’) but the
question ‘who is good’ results in ‘good(_G416)’. Remember that only non-quantified and at the
same time simple declarative sentences (no connectives) are stored in the ‘world’ database
when the program is executed.

Prolog offers some predicates such that one can build predicates from within the program and
call them. The predicate =.. is used to construct temporary predicates stored in variables and
they are used to build more complex structures. When finished, only the complete structure is
stored and those kept in variables are gone. An excellent example to predicate construction is
building noun/verb/adjective phrases from data in lexicon before beta reduction is applied on
those new predicates.

The overall complexity of dealing with exceptional cases and the necessity to achieve
completeness of the system within the bounds of the language fragment used forced me to deal
with rules piece by piece sometimes. That is why you may notice a rule is repeated sometimes
to deal with exceptional cases.

Program query-dbase.pl:

This program again makes extensive use of structure building predicates and when necessary
uses those predicates. The core of the program is based on symbolic manipulation. Quantifiers
and connectives are parsed and interpreted, then validity is checked by calling components as
directed by the semantics of the given query (every / some / or / and). The method used for
existential quantification is enforcing a double negation. This means “if the predicate formed
from the query does not fail”. The universal quantification does almost the same. But before that
the program forms a domain of true predicates. The universally quantified sentence is true if
every predicate in the domain with the same name as in quantification is true. The parsing of
query into sub-queries is linear operation in terms of Prolog terms and connectives/quantifiers.
A simple query may not take much time to answer if the world database is not too big. On the
other hand a universally quantified sentence requires an exhaustive search so this is the most
demanding query of all.

3. EXAMPLES OF OUTPUT

The examples in this section are of utmost importance to understand the limits of the system.
When there is a negative reply because of a grammatical mistake that will be emphasized.
Other failures must serve as indications of cases where the system breaks down. The sample
input sentences are chosen to give a complete set of examples.
In the sample executions below, first the command issued is shown and then the response. The
first line is the actual command and the line which starts with |: is where Prolog is waiting for an
input.

 - 7 -

The first part below is related to the program fol.pl. Here you will see how the meaning is
obtained and stored with the outcome of a first order logic sentence.

Please remember that you have to end every sentence with a full stop even if it is a
question and must not use any other punctuation anywhere else.

___SEMANTIC EXTRACTION AND TRANSLATION INTO FIRST ORDER LOGIC ____

1- Declarative ‘is’ sentence with regular nouns:

parse(X),fol(S,X).
|: a husband is a man.

X = [a, husband, is, a, man]
S = some(_G431, husband(_G431)&man(_G431))

Yes

?- parse(X),fol(S,X).
|: the weather is cold.

X = [the, weather, is, cold]
S = the(_G446, weather(_G446), cold(_G446))

Yes

?- parse(X),fol(S,X).
|: the sandwiches are good.

X = [the, sandwiches, are, good]
S = the(_G458, sandwiches(_G458), good(_G458))

Yes

Observe the use of adjective.

BUT NOT:

?- parse(X),fol(S,X).
|: weather is cold.

No (missing determiner)

 - 8 -

OR NOT:

?- parse(X),fol(S,X).
|: the brother is a good man.

No

The reason for this failure is that this sentence must assert that the brother is a man and the
brother is good. That complex expression could not be handled by the system. It is a missing
feature.

2- Declarative ‘is’ sentence with regular plural nouns:

?- parse(X),fol(S,X).
|: husbands are men.

No

The reason this is not handled was the difficulty in storing the semantic value extracted from this
sentence. It is ambiguous. Are all husbands men or some are, some aren’t?

3- Declarative ‘is’ sentence with proper nouns:

?- parse(X),fol(S,X).
|: Diane is a waiter.

X = ['Diane', is, a, waiter]
S = waiter('Diane')

Yes

Notice that Diane is quoted. That is you write a proper noun with a capital letter and parser
program turns it into a quoted atom.

BUT (wrong syntax):

?- parse(X),fol(S,X).
|: Diane is a waiters.

No

4- Declarative sentence with intransitive verb and regular nouns:

?- parse(X),fol(S,X).
|: a man laughed.

 - 9 -

X = [a, man, laughed]
S = some(_G422, man(_G422)&laughed(_G422))

Yes

BUT (wrong syntax):

?- parse(X),fol(S,X).
|: a man laugh.

No

5- Declarative sentence with transitive verb and regular nouns as subject and object:

?- parse(X),fol(S,X).
|: a woman wants a car.

X = [a, woman, wants, a, car]
S = some(_G440, woman(_G440)&some(_G478, car(_G478)&wants(_G440, _G478)))

Yes

BUT (wrong syntax):

?- parse(X),fol(S,X).
|: a girls wants a car.

No

Similarly (missing article),

16 ?- parse(X),fol(S,X).
|: a woman wants car.

No

6- Declarative sentence with transitive verb and proper nouns as subject and object:

?- parse(X),fol(S,X).
|: Jim loves Cathy.
X = ['Jim', loves, 'Cathy']
S = loves('Jim', 'Cathy')

Yes

7- Declarative sentence with transitive verb and proper noun as subject and regular noun
as object:

 - 10 -

?- parse(X),fol(S,X).
|: Tom closed the door.

X = ['Tom', closed, the, door]
S = the(_G442, door(_G442), closed('Tom', _G442))

Yes

?- parse(X),fol(S,X).
|: women want car.

No (determiners missing)

?- parse(X),fol(S,X).
|: women want the car.

No (determiner of subject missing)

?- parse(X),fol(S,X).
|: the women want the car.

X = [the, women, want, the, car]
S = the(_G452, women(_G452), the(_G488, car(_G488), want(_G452, _G488)))

Yes

?- parse(X),fol(S,X).
|: the women want the cars.

X = [the, women, want, the, cars]
S = the(_G455, women(_G455), the(_G491, cars(_G491), want(_G455, _G491)))

Yes
Observe how the semantic structure has the determiner as the root.

8- Declarative sentence with transitive verb and regular noun as subject and proper noun
as object:

?- parse(X),fol(S,X).
|: a man kissed Sue.

X = [a, man, kissed, 'Sue']
S = some(_G431, man(_G431)&kissed(_G431, 'Sue'))

Yes

OR similarly:

 - 11 -

?- parse(X),fol(S,X).
|: the sisters love Sue.

X = [the, sisters, love, 'Sue']
S = the(_G443, sisters(_G443), love(_G443, 'Sue'))

Yes

BUT NOT (missing determiner):

?- parse(X),fol(S,X).
|: sisters love Sue.

No

9- Yes/No question with subject regular noun and object regular noun:

?- parse(X),fol(S,X).
|: is a wife a woman.

X = [is, a, wife, a, woman]
S = some(_G441, wife(_G441)&woman(_G441))

Yes

?- parse(X),fol(S,X).
|: are the men the waiters.

X = [are, the, men, the, waiters]
S = the(_G459, men(_G459), waiters(_G459))

Yes

BUT NOT:

?- parse(X),fol(S,X).
|: is the wives a woman.

No

OR NOT:

?- parse(X),fol(S,X).
|: are the men waiters.

No (missing determiner)

10- Yes/No question with subject proper noun and object regular noun:

 - 12 -

?- parse(X),fol(S,X).
|: is John a brother.

X = [is, 'John', a, brother]
S = brother('John')

Yes

BUT NOT:

?- parse(X),fol(S,X).
|: is John Bill.

No

11- Do-word question with proper noun and intransitive verb:

?- parse(X),fol(S,X).
|: did Larry sleep.

X = [did, 'Larry', sleep]
S = sleep('Larry')

Yes

BUT NOT:

?- parse(X),fol(S,X).
|: did Larry sleeps.

No

OR NOT:

?- parse(X),fol(S,X).
|: does Larry slept.

No

12- Do-word question with regular noun and intransitive verb:

?- parse(X),fol(S,X).
|: does a boy sleep.

X = [does, a, boy, sleep]
S = some(_G438, boy(_G438)&sleep(_G438))

Yes

?- parse(X),fol(S,X).
|: do the brothers run.

 - 13 -

X = [do, the, brothers, run]
S = the(_G447, brothers(_G447), run(_G447))

Yes

BUT NOT

?- parse(X),fol(S,X).
|: do the brothers runs.

No

13- Do-word question with proper nouns as subject and object and transitive verb:

?- parse(X),fol(S,X).
|: did Larry love Sue.

X = [did, 'Larry', love, 'Sue']
S = love('Larry', 'Sue')

Yes

14- Do-word question with proper nouns as subject and regular noun as object and
transitive verb:

?- parse(X),fol(S,X).
|: did Larry read a book.

X = [did, 'Larry', read, a, book]
S = some(_G455, book(_G455)&read('Larry', _G455))

Yes

15- Do-word question with regular nouns as subject and object and transitive verb:

?- parse(X),fol(S,X).
|: did a girl love the hamburgers.

X = [did, a, girl, love, the, hamburgers]
S = some(_G483, girl(_G483)&love(_G483, _G518))

Yes

?- parse(X),fol(S,X).
|: did the girls love the hamburgers.

 - 14 -

X = [did, the, girls, love, the, hamburgers]
S = the(_G492, girls(_G492), love(_G492, _G525))

Yes

BUT NOT:

?- parse(X),fol(S,X).
|: did the girls love hamburgers.

No

Observe that again there is a missing determiner for object so it is not clear some hamburgers
or all hamburgers or the hamburgers are mentioned.

16- Do-word question with regular noun as subject and proper noun as object and
transitive verb:

?- parse(X),fol(S,X).
|: did the girls love Tom.

X = [did, the, girls, love, 'Tom']
S = the(_G459, girls(_G459), love(_G459, 'Tom'))

Yes

17- Who question is- verb, regular noun

?- parse(X),fol(S,X).
|: who is a mother.

X = [who, is, a, mother]
S = mother(_G438)

Yes

?- parse(X),fol(S,X).
|: who are the husbands.

X = [who, are, the, husbands]
S = husbands(_G446)

Yes

?- parse(X),fol(S,X).
|: who are good.

X = [who, are, good]
S = good(_G422)

Yes

 - 15 -

Observe how Prolog inserted a variable in the predicate.

18- Who – intransitive verb, regular noun

?- parse(X),fol(S,X).
|: who slept.

X = [who, slept]
S = slept(_G413)

Yes

19- Who – transitive verb, regular nouns as subject and object

?- parse(X),fol(S,X).
|: who wants a house.

X = [who, wants, a, house]
S = some(_G440, house(_G440)&wants(_G437, _G440))

Yes

?- parse(X),fol(S,X).
|: who ate the sandwiches.

X = [who, ate, the, sandwiches]
S = the(_G455, sandwiches(_G455), ate(_G452, _G455))

Yes

Observe how the determiner acts as the root of the semantic structure.

BUT NOT:

?- parse(X),fol(S,X).
|: who does eat a sandwich.

No
That type of question is not handled. It is a missing feature.

20- Who – transitive verb, regular noun as subject and proper noun as object

?- parse(X),fol(S,X).
|: who knew Cathy.

X = [who, knew, 'Cathy']

 - 16 -

S = knew(_G428, 'Cathy')

Yes

20- Connectives and logical operators; various sentences
This part is the most exiting experiment before the next. Here we get FOL sentences as
bindings.

?- parse(X),fol(S,X).
|: Tom loves a woman and the weather is cold.

X = ['Tom', loves, a, woman, and, the, weather, is, cold]
S = some(_G514, woman(_G514)&loves('Tom', _G514))&the(_G577, weather(_G577),
cold(_G577))

Yes

?- parse(X),fol(S,X).
|: every boy loves a girl and a man eats a hamburger.

X = [every, boy, loves, a, girl, and, a, man, eats|...]
S = every(_G536, boy(_G536)=>some(_G574, girl(_G574)&loves(_G536,
_G574)))&some(_G637, man(_G637)&some(_G675, hamburger(_G675)&eats(_G637,
_G675)))

Yes

?- parse(X),fol(S,X).
|: every worker wanted a house or a student read a book.

X = [every, worker, wanted, a, house, or, a, student, read|...]
S = every(_G533, worker(_G533)=>some(_G571, house(_G571)&wanted(_G533,
_G571)))\/some(_G634, student(_G634)&some(_G672, book(_G672)&read(_G634, _G672)))

Yes

?- parse(X),fol(S,X).
|: every man loves every woman.

X = [every, man, loves, every, woman]
S = every(_G458, man(_G458)=>every(_G496, woman(_G496)=>loves(_G458, _G496)))

 - 17 -

WORKING WITH FIRST ORDER LOGIC

Now the examples will show how the system interprets logic syntax.

Additionally we must use satisfy(world,S) predicate form quer-dbase.pl here.

Initially this is the world:

world(woman('Cathy')).
world(woman('Sue')).
world(man('Jim')).
world(man('John')).
world(man('Tom')).
world(man('Larry')).
world(woman('Diane')).

world(loves('Jim','Cathy')).
world(loves('Tom','Diane')).
world(loves('Larry','Diane')).

world(wants('Bill',house)).
world(wants('Maggie',house)).

So by examining the situation, we can’t say that every man loves a woman.

?- parse(X),fol(S,X),satisfy(world,S).
|: every man loves a woman.

No

Let’s add the knowledge that John also loves a woman.
?- parse(X),fol(S,X).
|: John loves Sue.

X = ['John', loves, 'Sue']
S = loves('John', 'Sue')

Yes

Now:

?- parse(X),fol(S,X),satisfy(world,S).
|: every man loves a woman.

X = [every, man, loves, a, woman]
S = every(_G566, man(_G566)=>some(_G604, woman(_G604)&loves(_G566, _G604)))

Yes

 - 18 -

As observed above, the added fact by the execution of :

?- parse(X),fol(S,X).
|: John loves Sue.

enabled us to get a positive result for the universally quantified sentence.

There is still an ambiguity in this query which the system can not handle. Is the referenced
woman a unique woman or for every man there is a woman but not necessarily the same one?

We humans can not answer this either. But the way the system handles it is clear from the
context. The system does not look for uniqueness, it is just any woman.

Similarly let’s try:

?- parse(X),fol(S,X),satisfy(world,S).
|: every man loves every woman.

No

And add the missing facts: (one by one for them to be included in the database)

?- parse(X),fol(S,X).
|: John loves Diane.

X = ['John', loves, 'Diane']
S = loves('John', 'Diane')

Yes

?- parse(X),fol(S,X).
|: John loves Cathy.

X = ['John', loves, 'Cathy']
S = loves('John', 'Cathy')

Yes
?- parse(X),fol(S,X).
|: Larry loves Cathy.
X = ['Larry', loves, 'Cathy']
S = loves('Larry', 'Cathy')

Yes

?- parse(X),fol(S,X).
|: Larry loves Sue.

X = ['Larry', loves, 'Sue']

 - 19 -

S = loves('Larry', 'Sue')

Yes

?- parse(X),fol(S,X).
|: Tom loves Sue.

X = ['Tom', loves, 'Sue']
S = loves('Tom', 'Sue')

Yes

?- parse(X),fol(S,X).
|: Tom loves Cathy.

X = ['Tom', loves, 'Cathy']
S = loves('Tom', 'Cathy')

Yes

?- parse(X),fol(S,X).
|: Jim loves Sue.

X = ['Jim', loves, 'Sue']
S = loves('Jim', 'Sue')

Yes
?- parse(X),fol(S,X).
|: Jim loves Diane.

X = ['Jim', loves, 'Diane']
S = loves('Jim', 'Diane')

Yes

Amazingly, now the query is successful:

?- parse(X),fol(S,X),satisfy(world,S).
|: every man loves every woman.

X = [every, man, loves, every, woman]
S = every(_G584, man(_G584)=>every(_G622, woman(_G622)=>loves(_G584, _G622)))

Yes

But look at the following example:

?- parse(X),fol(S,X),satisfy(world,S).

 - 20 -

|: Bill wants a house and Maggie wants a car.

X = ['Bill', wants, a, house, and, 'Maggie', wants, a, car]
S = some(_G622, house(_G622)&wants('Bill', _G622))&some(_G687,
car(_G687)&wants('Maggie', _G687))

Yes

What happened above?

The only predicate in the world database about Maggie was : world(wants('Maggie',house)).

The problem is that while fol(S,X), executed, as soon as it saw a proper name as Maggie, it
appended the fact it learned to the database.

To check:

?- world(some(_G687, car(_G687)&wants('Maggie', _G687))).

_G687 = _G512 ; (so it was stored in the knowledge base)

No (No here appears because I pressed semicolon to look for other results. It is not a failure)

This can be considered as a good side effect if only FOL queries are important. But on the other
hand it may be considered as a defect since the way the knowledge stored is different from that
of the world database.

4. PROGRAM CODE

Please see the attached printouts as it was not very practical to include code here because of
page orientation.

5. REFERENCES

Bratko, I. (2001). Prolog Programming for Artificial Intelligence (3rd ed.). Harlow, England:
Pearson Education Limited.

Brewka, G., & Dix, J. (1997). Knowledge representation with logic programs.
Retrieved from http://ii.fmph.uniba.sk/~sefranek/cudzie/bd.pdf.

Clocksin, W. F., & Mellish, C. S. (2003). Programming in Prolog (5th ed.). Berlin, Germany:
Springer- Verlag.

Cooper, R., Lewin, I., & Black, A. W. (1993). Prolog and natural language semantics.
Retrieved from http://www.ling.gu.se/~cooper/papers/comp-sem.pdf.

 - 21 -

Lloyd, J. W. (1984). Foundations of Logic Programming. Berlin, Germany: Springer-Verlag.

Nilsson, U., & Maluszynski, J. (2000). Logic, Programming and Prolog (2nd ed.). Linkoping,
Sweden: Linkoping University.

Nugues, P. M. (2006). An Introduction to Language Processing with Perl and Prolog: An Outline
of Theories, Implementation, and Application with Special Consideration of English, French,
and German. Gabbay, M., & Siekmann, J. (ed.). Heidelberg, Germany: Springer-Verlag.

O’Keefe, R.. A. (1990). The Craft of Prolog. Cambridge, MA: The MIT Press .

Pereira, F. C. N., & Shieber, S. M. (2002). Prolog and Natural-Language Analysis.
Retrieved from http://www.mtome.com/Publications/PNLA/prolog-digital.pdf.

6. APPENDIX – Project/Program Systems Manual

The whole set of programs must be in the same directory. Copy all files to some directory.
Change to that directory. On a Windows system changing to that directory is meaningless since
it is GUI based, just start the program.

These programs were developed on SWI-Prolog. So please open up an SWI-Prolog session
(from the directory where the files are copied to – if using Unix).

On a Unix system, type pl or swi-pl depending on your installation, if unsure issue command
“apropos prolog” and follow the information.

Then type consult('fol.pl'). at the Prolog interpreter prompt. This file will also load the other 4
files needed. Do not get surprised by the amount of warnings. They occur because Prolog
thinks some variables are useless, but the underlying symbolic manipulation for lambda calculus
needs them in place.

Steps of increasing complexity:

To see how the parser works alone, type parser. at the prompt. This will prompt you showing |:
sign. Type your English sentence without using any commas or other punctuation symbols and
always end the sentence with a full stop—even questions.

Then you will get the Prolog list filled with your words and anything that starts with capital letter
will be single quoted.

To see the translation using the DCG grammar parser and FOL translator, type :
parse(X),fol(S,X). Then the same prompt for input appears and when you type your sentences,
if they are syntactically valid, a query of FOL will be formed and bound to the S variable. Follow
section 3 examples for further details.

 - 22 -

To see how the inference engine works, type: parse(X),fol(S,X),satisfy(world,S).
This will read your sentence, parse it, translate into FOL, and query the database world.pl. For
further details, see the examples at the end of section 3.

If you need more facts, you can write them into world.pl. Follow the same format for predicates.
Same applies to lexicon.pl. If you need to extend the lexicon, write the facts there.

Do not rename the two knowledge base files unless you modify fol.pl fie to consult the new files.

