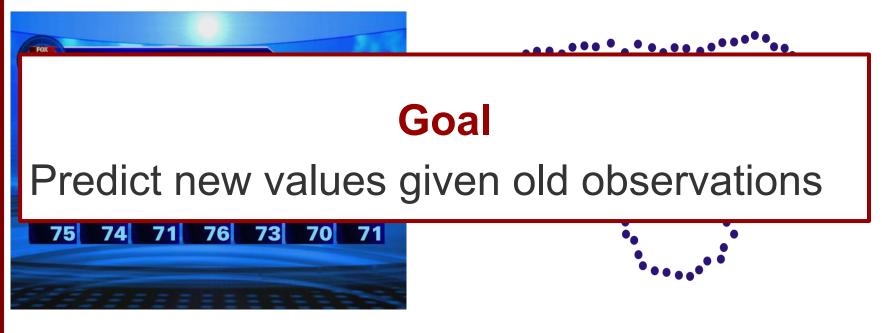
Motivation

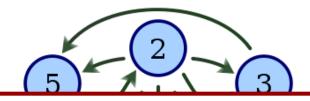
Sequential data often arise from measurements of time series



Weather Forecast

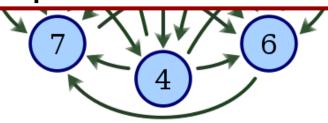
Person's position over time

Markov Model



Idea

Restrict the connectivity of future states to previous states



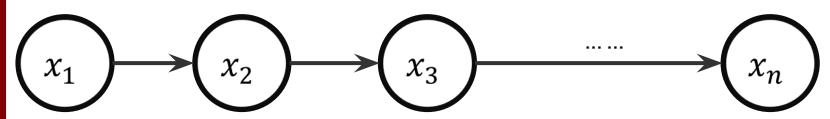
Outline

- Markov Model
- Hidden Markov Model
- Inference using HMM
- Case Study: Speech Recognition
- Conclusion

Markov Model

 Markov Models: Only assume a certain number of previous states to be relevant

• First-order Markov Models: Only the last state is relevant for the current state



Markov Model

Recall: Chain Rule

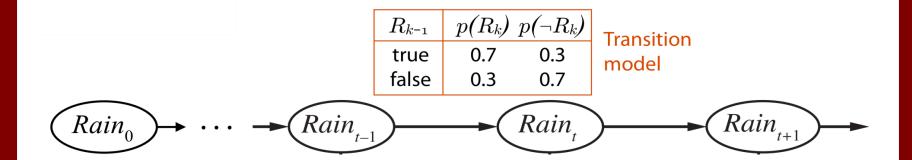
$$p(x_1, x_2, x_3, \dots, x_n) = \prod_{k=1}^{N} p(x_k \mid x_1, \dots, x_{k-1})$$

First-order Markov Models simplify this to

$$p(x_1, \dots, x_K) = p(x_1) \prod_{k=2}^{K} p(x_k \mid x_{k-1})$$

by only taking the **last state** into account

Example



State Space Model

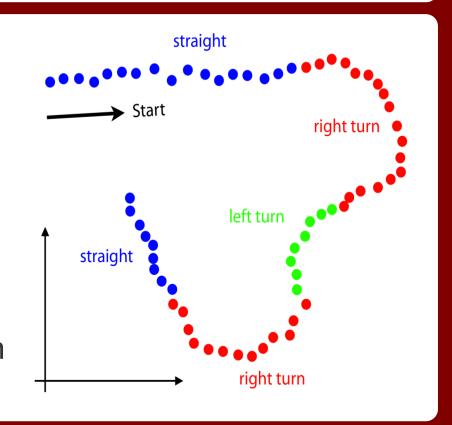
Input: Human trajectory in 2d

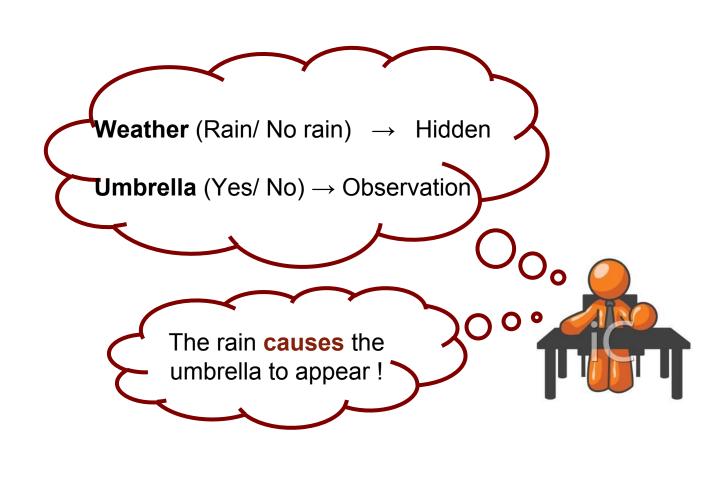
Output: Classification

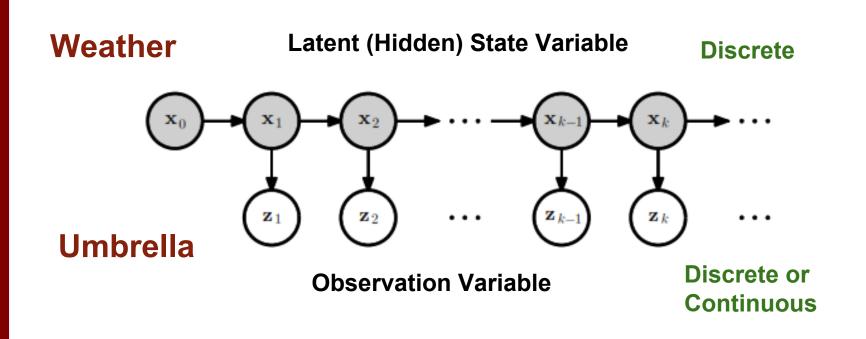
- Walking straight
- Right turn
- Left turn

Problem:

State space is not observation space

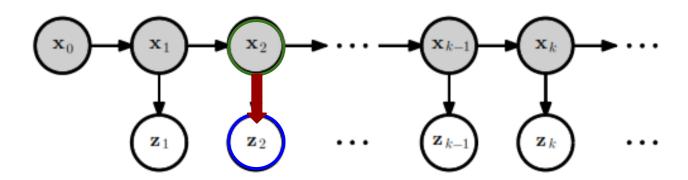


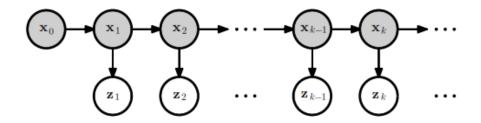




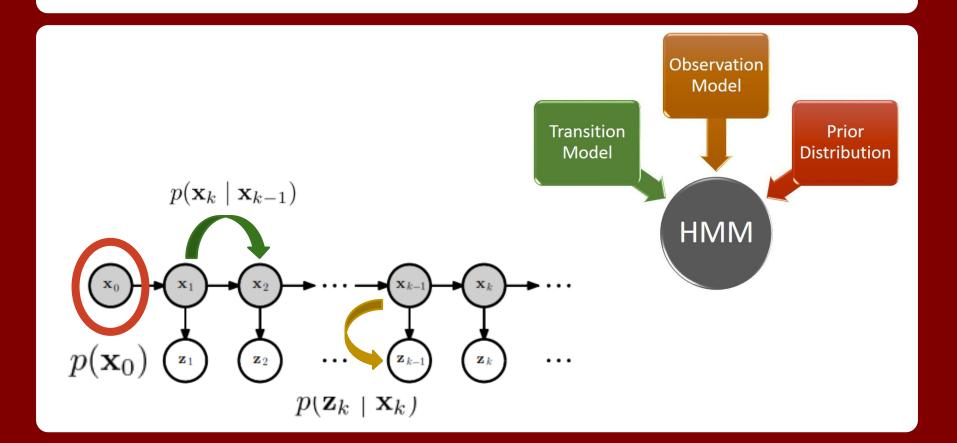
State Space Model

An **observation** at time k is only dependent on the **state** of time k and independent of all states from the beginning to k-1





$$p(\mathbf{x}_1,\ldots,\mathbf{x}_K,\mathbf{z}_1,\ldots,\mathbf{z}_K)$$



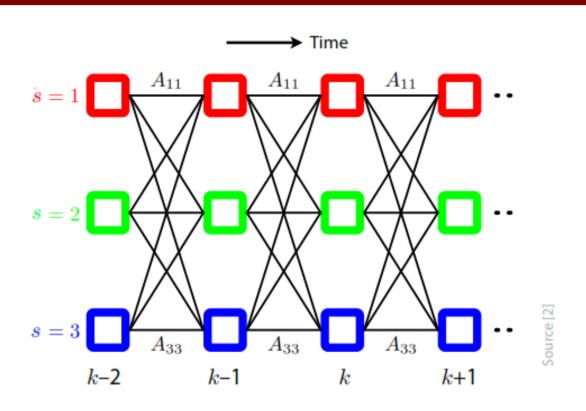
Transition Model

$$p(\mathbf{x}_k \mid \mathbf{x}_{0:k-1}) = p(\mathbf{x}_k \mid \mathbf{x}_{k-1})$$

$$A = \underbrace{\frac{j \text{ (next)}}{k}}_{\infty} \left(\begin{array}{ccc} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{array} \right)^{\sum_{j} A_{1j} = 1}$$

Probability of a transition from state 3 to state 2

Transition Model



Observation Model

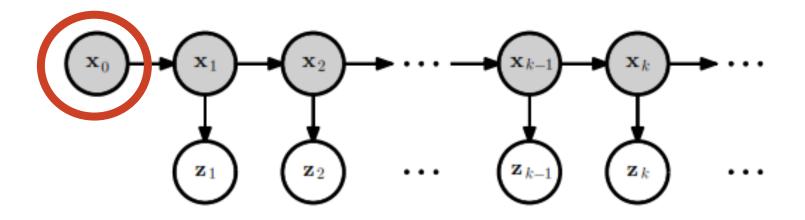
$$p(\mathbf{z}_k \mid \mathbf{x}_{0:k}, \mathbf{z}_{0:k-1}) = p(\mathbf{z}_k \mid \mathbf{x}_k)$$

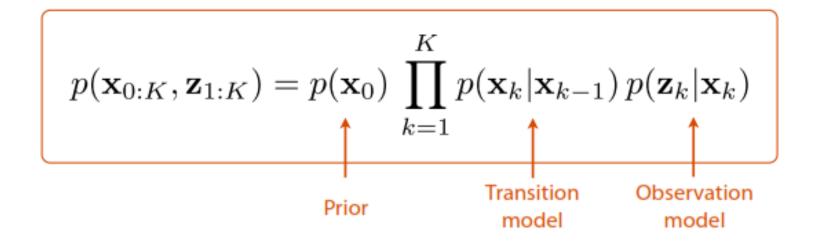
$$j$$
 (observation symbol)

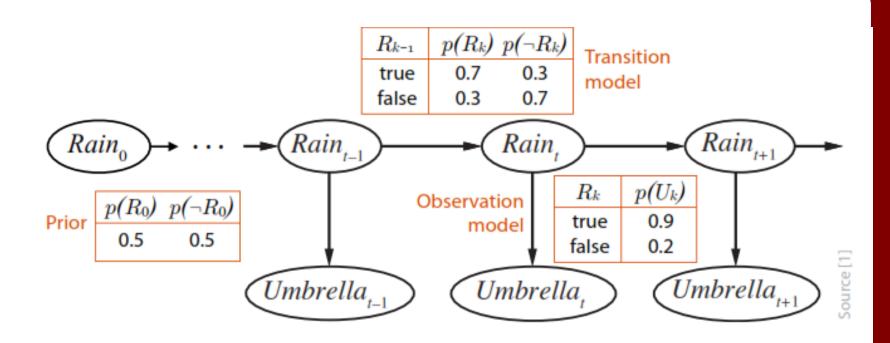
$$E = \underbrace{\text{Free (observation symbol)}}_{\text{Cobservation symbol)}} \begin{bmatrix} E_{11} & E_{12} & E_{13} & E_{14} & E_{15} \\ E_{21} & E_{22} & E_{23} & E_{24} & E_{25} \\ E_{31} & E_{32} & E_{33} & E_{34} & E_{35} \end{bmatrix}^{\sum_{j} E_{1j}} = 1$$

Emission probability of symbol 4 from state 3

Prior Probability



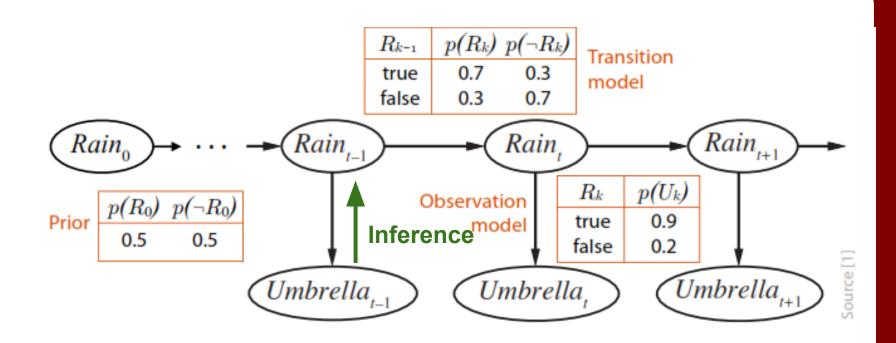




Important Note

- First-order Markov Models are often inaccurate, since you throw away any information about the past
- Increasing the accuracy by more general models
 - Increasing the order of the Markov model
 - Adding more state variables

Inference



1. Filtering

$$p(\mathbf{x}_k \mid \mathbf{z}_{1:k})$$

Present

1. Filtering

$$p(\mathbf{x}_k \mid \mathbf{z}_{1:k})$$

2. Smoothing

$$p(\mathbf{x}_t \mid \mathbf{z}_{1:k}) \quad 0 \le t < k$$

Past

1. Filtering

$$p(\mathbf{x}_k \mid \mathbf{z}_{1:k})$$

2. Smoothing

$$p(\mathbf{x}_t \mid \mathbf{z}_{1:k}) \quad 0 \le t < k$$

3. Prediction

$$p(\mathbf{x}_{k+t} \mid \mathbf{z}_{1:k}) \quad t > 0$$

Future

1. Filtering

$$p(\mathbf{x}_k \mid \mathbf{z}_{1:k})$$

2. Smoothing

$$p(\mathbf{x}_t \mid \mathbf{z}_{1:k}) \quad 0 \le t < k$$

3. Prediction

$$p(\mathbf{x}_{k+t} \mid \mathbf{z}_{1:k}) \quad t > 0$$

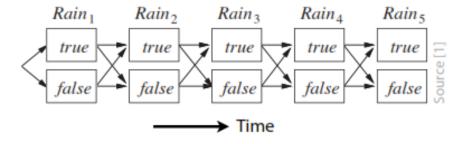
4. Most Likely Sequence

$$\underset{\mathbf{x}_{1:k}}{\operatorname{arg\,max}} p(\mathbf{x}_{1:k} \mid \mathbf{z}_{1:k})$$

Inference Example

Day 1 Day 2 Day 3 Day 4 **Observation:** Weather: What is the most likely weather sequence??

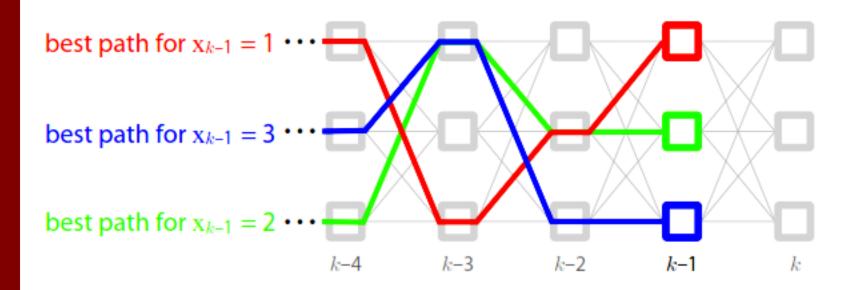
Most Likely Sequence



• Recall, we want to find the state sequence \mathbf{x}^* that maximizes the probability along its path, i.e. $\mathbf{x}^* = \operatorname*{arg\,max}_{\mathbf{x}_{1:k}} p(\mathbf{x}_{1:k} \mid \mathbf{z}_{1:k})$

Viterbi Algorithm

Maximizing path for k-1

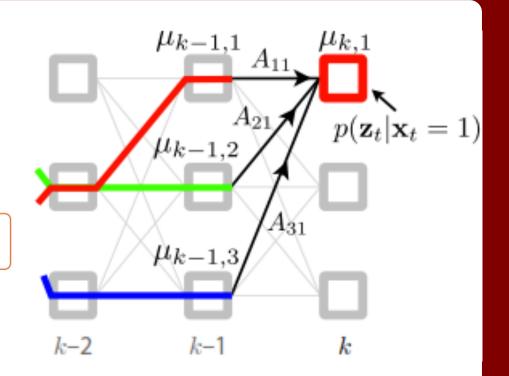


Viterbi Algorithm

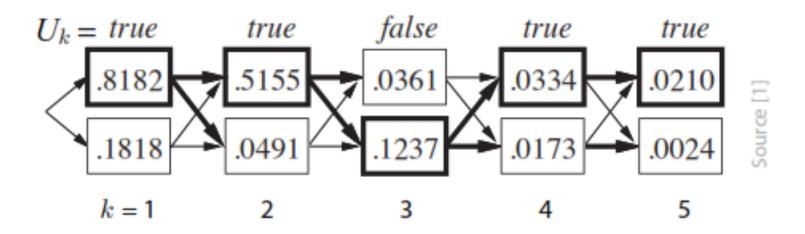
The algorithm computes

$$\mu_k = \max_{\mathbf{x}_{1:k-1}} p(\mathbf{x}_{1:k}, \mathbf{z}_{1:k})$$
 as

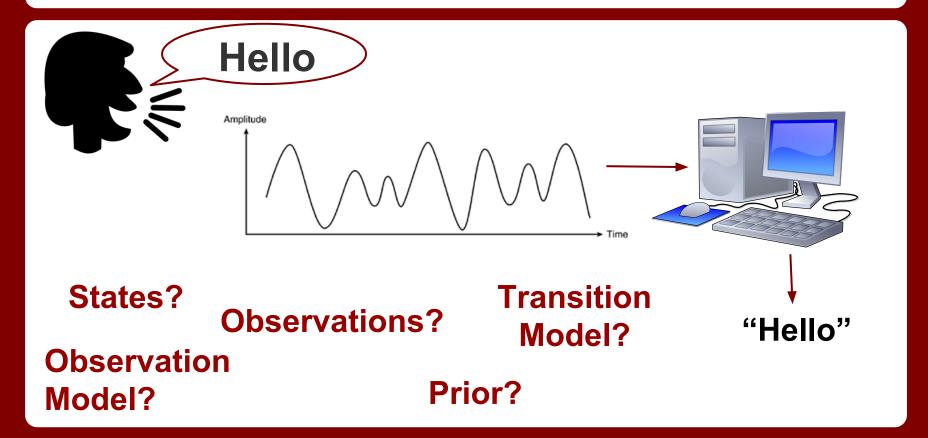
$$\mu_k = p(\mathbf{z}_k \mid \mathbf{x}_k) \max_{\mathbf{x}_{k-1}} \left(p(\mathbf{x}_k \mid \mathbf{x}_{k-1}) \, \mu_{k-1} \right)$$



Viterbi Algorithm



Speech Recognition



Strengths & Weaknesses of HMM

HMM provides better results than MM

Principle of HMM can be adapted to many problems, e.g. finding alignment

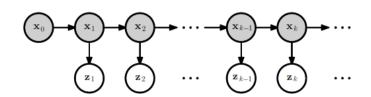
Computationally **expensive**, both in memory and time

Need **more training** than classical Markov Models

Summary

Markov Model

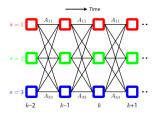
Hidden MM



Transition Model

Observation Model

Prior



$j \,$ (observation symbol)

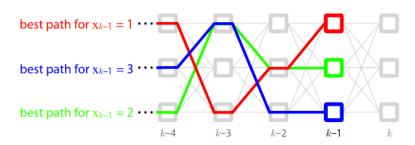
$$E = \underbrace{\begin{array}{c} \underbrace{\text{g}} \\ \text{E}_{21} \\ E_{21} \\ E_{31} \\ E_{32} \\ E_{33} \\ E_{33} \\ E_{34} \\ E_{35} \end{array}}_{E_{34}} \underbrace{\begin{array}{c} E_{15} \\ E_{25} \\ E_{35} \\ E_{35$$

Emission probability of

Summary

Inference using HMM

- Filtering
- Smoothing
- Prediction
- Most likely Sequence
 - Viterbi Algorithm



Thank you

Sources

Most important graphics from this presentation are taken from

http://srl.informatik.uni-freiburg.de/teachingdir/ws13/slides/09-TemporalReasoning-1.pdf