
LG518 Problems with simple Context Free Phrase Structure
Grammars
Doug Arnold

University of Essex
doug@essex.ac.uk

1 Introduction

The central idea of (Context Free) Phrase Structure Grammar is to describe the hierarchical structure
of phrases by means of rules, which define trees:

(1) a. S→ NP VP
b. VP→ V (NP) (PP)
c. PP→ P NP
d. NP→ DET N

(2) S
h
hh

(
((

NP
X
X

�
�

DET

the

N

baby

VP

V

cried

It is ‘context free’ because the choice of rule to expand a non-terminal does not depend on the
context. This is a very attractive model of grammar:

• directional neutrality (neutral with respect to bottom-up vs top-down interpretation);
• process neutrality (neutral with respect to generation or parsing)
• it has both a ‘generative’ (proof theoretic) and an entirely constraint based, static (model

theoretic) interpretation.

But there are several problems:

2 Problem: Redundancy, Missed Generalization

In a Context Free PSG, non-terminal symbols are atoms. Thus, while one can write rules like the
following, TVsing and TVplur are completely unrelated to each other, and to IVsing.

(3) a. S→ NPsing VPsing

b. S→ NPplur VPplur

c. VPsing → IVsing

d. VPsing → TVsing NPsing

e. VPsing → TVsing NPplur

etc., etc.

HPSG Solution: non-terminals are complex, possibly underspecified, categories (attribute-value
structures, descriptions of feature structures).

We need a richer notion of ‘matching’ (to define what it means for a tree to satisfy a rule): the notion
of unification. See below.

1

http://privatewww.essex.ac.uk/~doug
http://www.essex.ac.uk
mailto:doug@essex.ac.uk

3 Problem: Headedness

There is nothing to prevent linguistically crazy rules such as:

(4) VP→ DET PP

i.e. there is no idea of headedness (endocentricity).

HPSG Solution: Notion of Headedness, and the Head Feature Principle (HFP).

In headed constructions, one item is identified as the head. The HFP requires the head and the
mother to have certain properties in common (specifically, they must share the value of the HEAD
attribute).

This means the branches between S and VP, and VP and V in (5) should be labelled ‘HEAD’.

(5) S
h
hh

(
((

SUBJ

NP
X
X

�
�

SPEC

DET

the

HEAD

N

baby

HEAD

VPHEAD

V

cried

4 Problem: Complement Selection

There is nothing to rule out:

(6) a. Fido barked.
b. * Fido barked the bone.
c. * Fido enjoyed.
d. Fido enjoyed the bone.

Subcategorization: Heads dictate properties of complements.

5 Formal Foundations

5.1 Subsumption, Unification

There is a very natural partial order on FS, corresponding to increased specificity of descriptions
(subsumption).

A ⊑B A subsumes B (A is more general than B)
B ⊒A B extends A (B is more specific than A)

This can be pictured as a lattice.

2

5.2 Subsumption Lattice

⊤

��
ssggg

ggg
ggg

ggg
ggg

ggg
ggg

ggg
gg

++VV
VVV

VVV
VVV

VVV
VVV

VVV
VVV

VV

[

num sing
]

%%K
KK

KK
KK

KK

[

per 3
]

zzvv
vv
vv
vv
v

##
GG

GG
GG

GG

[

num pl
]

zzvv
vv
vv
vv
v

num sing

per 3

%%K
KK

KK
KK

KK
K

num pl

per 3

zztt
tt
tt
tt
tt

⊥

Combining (i.e. conjoining) descriptions (i.e. sets of constraints) A and B produces a description
that is at least as specific as either: we talk about the unification of A and B.

(7)
[

num sing
]

⊔

[

per 3
]

=

num sing

per 3

(8)
[

num sing
]

⊔

[

num pl
]

= ⊥ (corresponding to failure of unification)

This can very easily be made precise (the unification of descriptions A and B is the most general
description that:

• combines the information in A and B ; or equivalently:
• extends both A and B; or equivalently:
• is subsumed by A and B.

5.3 Type vs Token identity and Re-entrance

Feature structures can be ‘re-entrant’, in the sense that two distinct paths can point to the same
object (as opposed to two distinct objects of the same type).

Similarly, in descriptions, different attributes can have the ‘same value’ in two ways:

(9) token identity:

f 1

h1 v1

h2 v2

g 1

(10) type identity:

f 1

h1 v1

h2 v2

g

h1 v1

h2 v2

Consider what happens if we unify them with (11):

(11)
[

f

[

h3 v3

]

]

Type identity arises ‘accidentally’ — token identity is what the grammar cares about. (Note: no

3

‘copying’ of features: token identity does all the work).

Consider an example like the following, and suppose that NPs carry an agreement attribute of some
kind indicating, inter alia person, number, gender (and maybe humanness).

(12) Who 1 did Sandy say ∆ 1 likes herself 1 ?

(Assume we can write rules to ensure that the fronted wh-item, the subject of likes, and the reflexive
have the same value for this agreement feature, as indicated here by 1).

On encountering Who, we know that i must be human; likes requires its subject to be 3rd person
and singular, and herself is feminine.

So we know automatically that 1 is 3rd, singular, human and feminine, and (e.g.) that the question
is about a 3rd singular female human. We can also explain why these are impossible:

(13) a. *What 1 did Sandy say ∆ 1 likes herself 1 ?
b. *Who 1 did Sandy say ∆ 1 like herself 1 ?
c. *Who 1 did Sandy say ∆ 1 likes themselves 1 ?

But can get:

(14) Who 1 did Sandy say ∆ 1 like themselves 1 ?

5.4 Typed Feature Structures

The Feature Structures used in HPSG are typed (or ‘sorted’).

Each type declares what attributes are appropriate (and perhaps what type of value they can have).
For example:

• the attribute case is appropriate for nouns, but not verbs.
• (in English) the attribute tense is appropriate for verbs, but not adjectives, nouns or determin-

ers.

This gives us a way of expressing co-occurrence restrictions on features (e.g. a word/phrase has
tense if and only if it is verbal).

Conceptually, typing of FSs allows us to think about when an FS is ‘complete’ (viz: when every
attribute in it has an appropriate value, that value is itself complete), e.g. English nouns are either
definite or indefinite (have a value for definite), and not ‘over-’ or ‘wrongly-specified’ (e.g. does not
contain inappropriate features, so a verb cannot have value for case; in English, nouns and adjectives
do not have a tense feature).

Unification has to respect typing:

(15)

a

A1 v1

⊔

b

A2 v2

=

c

A1 v1

A2 v2

(this is only possible if c = a ⊔ b, which requires that c is a subtype of both a and b).

Notice that ‘atomic’ values are just types that have no appropriate attributes.

5.5 Advantages of Unification

A constraint based approach (one that uses unification) has a number of attractions:

• describing things in terms of attributes and values is a very natural way of describing all kinds

4

of knowledge – it makes part of the language learning task look more like general learning
(classification, etc.), and allows us to focus on those aspects of linguistic knowledge (and
acquisition) that are really special.

• it gives a precise and explicit notion of ‘feature’ (a theory of features), e.g. when two feature
descriptions are ‘the same’, when one is more general than another, and gives a precise
meaning to ideas like ‘underspecification’ of categories.

• it makes it easy to express generalizations, e.g. to organize (e.g.) lexical entries into inheritance
hierarchies, so that it is easy to state that something is a property of all nouns or all verbs, or
that something is a property of all finite verbs, etc.

• it allows us to work with partial information and underspecification (a partial/underspecified
description is still a description); this is very important in language processing, because it
allows incremental interpretation.

• Unification is order independent (commutative, and associative), and a theory that uses it
yields grammars that are purely declarative. A purely declarative grammar is much easier to
understand than one where the order of operations is significant.

• from a processing point of view, it gives flexibility (cf. in example (12), it does not matter in
what order the information about the index comes in.

• If grammatical knowledge is purely declarative, it helps us to explain how the same knowledge
can be used for different tasks (e.g. comprehension, production) without bias towards any
one (cf. trying to ‘reverse’ a transformational grammar for use in parsing is very difficult).

6 Reading

Sag et al. (2003) Pollard and Sag (1994) Green (2000), Borsley (1996).

References

Robert D. Borsley. Modern Phrase Structure Grammar. Number 11 in Blackwell textbooks in linguistics.
Blackwell Publishers, 1996.

Georgia Green. Elementary principles of hpsg. URL
http://clwww.essex.ac.uk/papers/hpsg/green.ps. Unpublished Ms, January 2000.

Carl J. Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar. University of Chicago Press,
Chicago, 1994.

Ivan A. Sag, Thomas Wasow, and Emily M. Bender. Syntactic Theory: A
Formal Introduction. CSLI Publications, Stanford, 2 edition, 2003. URL
http://cslipublications.stanford.edu/site/1575864002.html.

5

http://clwww.essex.ac.uk/papers/hpsg/green.ps
http://cslipublications.stanford.edu/site/1575864002.html

	Introduction
	Problem: Redundancy, Missed Generalization
	Problem: Headedness
	Problem: Complement Selection
	Formal Foundations
	Subsumption, Unification
	Subsumption Lattice
	Type vs Token identity and Re-entrance
	Typed Feature Structures
	Advantages of Unification

	Reading

