Probabilistic Retrieval

Probabilistic Model

- Use probability to estimate the "odds" of relevance of a query to a document.
- Need to know in advance which documents are relevant to query to compute an estimate of relevance.

Some Background

- If we have four balls, three red and one black, and it is equally likely that we could pick any of the balls, we can estimate the probability that of:

- Choosing a black ball $=1 / 4$
- Choosing two black balls in a row $(1 / 4)(1 / 4)=(1 / 8)$

Relevance Odds for One Term

- Now lets switch to documents. Lets say we want to estimate, for a given term, the odds it will be in a relevant document.

- Now we assume documents D1 and D2 are relevant, and D3 and D4 are nonrelevant. Need to compute the estimate that a document D is relevant given the query term $t l$
- Odds that R is relevant given t1:
num relevant with t 1 / num relevant
$O(R \mid t 1)=$
num of docs with t1 / all documents
$O(R \mid t 1)=(1 / 2) /(2 / 5)=.5 / .4=1.25: 1$
© Grossman, Frieder, Goharian, 2002

Computing Odds of Relevance for Multiple Terms

- Now we are given query terms $t_{1}, t_{2}, \ldots, t_{n}$ so we want to compute the odds of relevance given these terms:
- $\mathrm{O}\left(\mathrm{R} \mid \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$
- By repeated application of Bayes theorem we can take the product of these individual odds.
- $\mathrm{O}\left(\mathrm{R} \mid \mathrm{t}_{1}\right) \times \mathrm{O}\left(\mathrm{R} \mid \mathrm{t}_{2}\right) \times \ldots \mathrm{O}\left(\mathrm{R} \mid \mathrm{t}_{\mathrm{n}}\right)$
- Note, since the log function is often used to scale the odds, the sum of the log odds (log of each odds) may be used:

$$
\log \left(\prod_{i=1}^{i=t} O\left(R \mid t_{i}\right)\right)=\sum_{i=1}^{i=t} \log \left(O\left(R \mid t_{i}\right)\right)
$$

Principles surrounding weights

 (Robertson and Sparck Jones, 1976)- Independence Assumptions
- I1: The distribution of terms in relevant documents is independent and their distribution in all documents is independent.
- I2: The distribution of terms in relevant documents is independent and their distribution in non-relevant documents is independent.
- Ordering Principles
- O1: Probable relevance is based only on the presence of search terms in the documents.
- O2: Probable relevance is based on both the presence of search terms in documents and their absence from documents.

Parameters in Computing Term Weight

$\mathrm{N}=$ total number of documents in collection
$\mathrm{R}=$ total number of relevant documents for a query
$\mathrm{n}=$ number of documents that contain the query term
$r=$ number of relevant documents that contain the query term

Probabilistic Variations to Compute Term Weight

- I1 and O1: (r/R) / (n/N)
- I2 and O1: (r/R) / ((n-r)/(N-R))
- I1 and O2: (r/(R-r) / (n / (N-n))
- I2 and O2: (r/(R-r))/((n-r)/((N-n)-(R-r)))
- Adding in some fluff of 0.5 for no good reason except that it helps:
- $((\mathrm{r}+.5) /(\mathrm{R}-\mathrm{r}+.5)) /((\mathrm{n}-\mathrm{r}+.5) /((\mathrm{N}-\mathrm{n})-(\mathrm{R}-\mathrm{r}))+.5)$

Probabilistic Retrieval Example

- D1: "Cost of paper is up." (relevant)
- D2: "Cost of jellybeans is up." (not relevant)
- D3: "Salaries of CEO's are up." (not relevant)
- D4: "Paper: CEO's labor cost up." (????)

Q. Term	Relevant	Not relevant	Evidence paper
for (strong)			
CEO	0	0	$1 / 2$
labor	0	0	against
cost	1	$1 / 2$	none
up	1	1	for (weak)
l			none

Probabilistic Retrieval Example (Cont'd)

- cost appears in 1 of 1 relevant document
- odds are $(1+.5) /(0+.5)=3$ to 1 that cost will appear
- cost appears in 1 of 2 non-relevant documents
- odds are $(1+.5) /(1+.5)=1$ to 1 that cost will appear
- If cost appears in D, then the odds are $(3 / 1) /(1 / 1)=$ 3 to 1 that D is relevant.

Probabilistic Retrieval Example (Cont'd)

- D1: "Cost of paper is up." (relevant)
- D2: "Cost of jellybeans is up." (not relevant)
- D3: "Salaries of CEO's are up." (not relevant)
- D4: "Paper: CEO's labor cost up." (????)

Term
paper
CEO
labor
cost
up
TOTAL ODDS (product of the individual odds) = $\mathbf{1 5}$
© Grossman, Frieder, Goharian, 2002

Modifications to Basic Probabilistic Model

- Term frequency and document length are not considered in original probabilistic model.
- Performed worse than vector space model (VSM). Thus:
- Modification to Probabilistic model:
- Incorporating tf-idf (Croft and Harper, 1979)
- Incorporating document length (Robertson and Walker)

Modifications to Basic Probabilistic Model

$\mathrm{n}=$ number of documents having the term
$\mathrm{R}=$ total number of relevant documents for a query
$r=$ number of relevant documents that contain the query term
$\mathrm{Tf}=$ term frequency of term in document
$\mathrm{Qtf}=$ term frequency of query term
$\mathrm{Dl}=$ number of terms in document (document length)
$|\mathrm{Q}|=$ number of terms in query
Δ = average document length
$\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}=$ tuning parameters

$$
S C\left(Q, D_{i}\right)=\sum_{j=1}^{\prime} \log \left(\frac{\frac{r}{R-r}}{\frac{n-r}{(N-n)-(R-r)}}\right)\left(\frac{\left(k_{1}+1\right) f_{i j}}{K+t f_{i j}}\right)\left(\frac{\left(k_{3}+1\right) q f_{j}}{k_{3}+q t_{i j}}\right)+\left(k_{2}|Q| \frac{\Delta-d l}{\Delta+d l_{i}}\right)
$$

Equivalence to Vector Space Model

- Now, if
- Relevant set $=\{$ query $\}$, and
- Non-relevant set $=\{ \}$
- Then probabilistic retrieval reduces to vector space retrieval.

Summary of Basic Probabilistic Model

- Pros
- Some theoretical basis
- Sort of derives the idf
- Cons
- no intuitive support for term frequency
- lots of assumptions

