CSE6390E Introduction to Computational Linguistics Fully Independent Model and Naïve Bayes Model

YORK

Presented by Nikolay Yakovets

3

Preliminaries/Last Day

Fully Independent Model

Naïve Bayes Model

Slides adapted from lectures by Vlado Keselj Dalhousie University

Set of *n* random variables that capture the outcome in a model:

$$V = (V_1, V_2, \dots, V_n)$$

* Each variable can be assigned a value from a finite set of different values:

$$\{x_1, x_2, \dots, x_m\}$$

- Random configuration
 - A tuple of values where each value is assigned to a variable

$$\vec{x} = (x_1, x_2, \dots, x_n)$$

$$V_1 = x_1, V_2 = x_2, \dots, V_n = x_n$$

In modeling our problem we assume that a sequence of configurations is drawn from some random source:

$$x^{(1)} = (x_{11}, x_{12}, \dots, x_{1n})$$
$$x^{(2)} = (x_{21}, x_{22}, \dots, x_{2n})$$
$$\vdots$$
$$x^{(t)} = (x_{t1}, x_{t2}, \dots, x_{tn})$$

Probabilistic Modeling in NLP is a general framework for modeling NLP problems using random variables, random configurations, and finding effective ways of reasoning about probabilities of these configurations.

* Evaluation

Compute probability of a complete configuration

Simulation (aka Generation or Sampling)

Generate random configurations

Inference

- Marginalization
 - Computing probability of a partial configuration
- Conditioning
 - Computing conditional probability of a completion given an observation
- Completion
 - Finding the most probable completion, given an observation

* Learning

Learning parameters of a model from data

Example: Spam Detection

- GOAL: Automatically detect whether an arbitrary email message is spam or not
- ***** Have 3 random variables in the model:
 - Caps is 'Y' if the message subject line does not contain lowercase letter, 'N' otherwise
 - Free is 'Y' if the word 'free' appears in the message subject line,
 'N' otherwise
 - Spam is 'Y' if message is spam, and 'N' otherwise

* Mailbox is a random source

- Randomly select 100 messages
- Count how many times each configuration (each email) appears

Free	Caps	Spam	Number of messages
Y	Y	Y	20
Y	Y	Ν	1
Y	Ν	Y	5

* Last day

- Joint Distribution Model
 - Specify complete joint probability distribution, i.e. the probability of each complete configuration
- Drawbacks
 - Memory cost to store table
 - Running-time to do summations
 - The sparse data problem in learning

* Today

Fully Independent Model

Fully Independent Model

* Assume all variables are independent:

$$P(V_1 = x_1, ..., V_n = x_n) = P(V_1 = x_1) \cdots P(V_n = x_n)$$

Evaluation

- This is an efficient model
 - Small number of parameters: O(nm)
 - Represent each component of distribution separately
 - Fetch $P(V_i = x)$ from lookup table with *m* parameters

***** BUT usually a **too strong** assumption!

- Very restricted form of joint distribution
- Silly model as far as real applications go, not very useful
- ***** Translated into SPAM example:

 $P(Free, Caps, Spam) = P(Free) \cdot P(Caps) \cdot P(Spam)$

Example: Spam Detection

* Assume

MLE Learning

• Caps, Free and Spam are independent

* Say have the following data:

Free	Caps	Spam	Number of messages	P
Y	Y	Y	20	0.20
Y	Y	N	1	0.01
Y	Ν	Y	5	0.05
Y	Ν	N	0	0.00
N	Y	Y	20	0.20
N	Y	N	3	0.03
N	Ν	Y	2	0.02
N	Ν	N	49	0.49
		Total:	100	1.00

Settimate probability tables for independent variables:

Free	P(<i>Free</i>)	Caps	P(<i>Caps</i>)	Spam	P(<i>Spam</i>)	
Y	$\frac{20+1+5+0}{100} = 0.26$	Y	$\frac{20+1+20+3}{100} = 0.44$	Y	$\frac{20+5+20+2}{100} \neq 0.4$	17
N	$\frac{20+3+2+49}{100} = 0.74$	N	$\frac{5+0+2+49}{100} = 0.56$	N	$\frac{1+0+3+49}{100} = 0.53$	3

Any message is **Spam** with **P=0.47** no matter what **Free** or **Caps** is!

Example: Spam Detection

Say want to know the probability of configuration:

$$(Caps = Y, Free = N, Spam = N)$$

Then the probability in fully independent model evaluates to the following:

$$P(Free = Y, Caps = N, Spam = N) =$$

$$= P(Free = Y) \cdot P(Caps = N) \cdot P(Spam = N) = 0.26 \cdot 0.56 \cdot 0.53$$

$$= 0.077168 \approx 0.08$$
Fetch from lookup table

Evaluation

* Evaluation

Simulation (Sampling)

• For every j = 1, ..., n independently sample x_j according to lookup table value of $P(V_j = x_j)$

Sum-product computation: y_k is constant for summation over y_{k+1}!

- Conjoin $(x_1, ..., x_n)$ to form a compete configuration
- Inference Marginalization

$$P(V_{1} = x_{1}, ..., V_{k} = x_{k}) = \sum_{y_{k+1}} \cdots \sum_{y_{n}} P(V_{1} = x_{1}, ..., V_{k} = x_{k}, V_{k+1} = y_{k+1}, ..., V_{n} = y_{n})$$

$$= \sum_{y_{k+1}} \cdots \sum_{y_{n}} P(V_{1} = x_{1}) \cdots P(V_{k} = x_{k}) P(V_{k+1} = y_{k+1}) \cdots P(V_{n} = y_{n})$$

$$= P(V_{1} = x_{1}) \cdots P(V_{k} = x_{k}) \left[\sum_{y_{k+1}} P(V_{k+1} = y_{k+1}) \left[\sum_{y_{k+2}} \cdots \left[\sum_{y_{n}} P(V_{n} = y_{n}) \right] \right] \right]$$

$$= P(V_{1} = x_{1}) \cdots P(V_{k} = x_{k}) \left[\sum_{y_{k+1}} P(V_{k+1} = y_{k+1}) \right] \cdots \left[\sum_{y_{n}} P(V_{n} = y_{n}) \right]$$

* Only have to lookup and multiply n numbers!

***** Inference – Conditioning

$$\frac{P(V_{k+1} = y_{k+1}, ..., V_n = y_n | V_1 = x_1, ..., V_k = x_k)}{P(V_1 = x_1, ..., V_k = x_k, V_{k+1} = y_{k+1}, ..., V_n = y_n)} = \frac{P(V_1 = x_1, ..., V_k = x_k)}{P(V_1 = x_1, ..., V_k = x_k)} = \frac{P(V_1 = x_1) \cdots P(V_k = x_k)P(V_{k+1} = y_{k+1}) \cdots P(V_n = y_n)}{P(V_1 = x_1) \cdots P(V_k = x_k)} = P(V_{k+1} = y_{k+1}) \cdots P(V_n = y_n)$$

* Only have to lookup and multiply n-k numbers

***** Inference – Completion

over

***** Joint Distribution Model vs. Fully Independent Model

Structured probability models are a compromise solution between these two models

- Address the issue of sparse data
- Model important dependencies among random variables

- * Structured Probability Model
- Assume that all variables are independent except one distinguished variable – class variable
- Scalar Control Cont

Naïve Bayes Model

- * Assume V_1 is the output variable and V_2, \ldots, V_n are input variables
- Then classification problem is a conditional probability computation problem:

$$P(V_1 = x_1 | V_2 = x_2, V_3 = x_3, \dots, V_n = x_n)$$

* After applying Bayes theorem we obtain:

$$P(V_{1} | V_{2}, V_{3}, ..., V_{n}) = \frac{P(V_{2}, V_{3}, ..., V_{n} | V_{1})}{P(V_{2}, V_{3}, ..., V_{n})} = \frac{P(V_{2} | V_{1}) \cdot P(V_{3} | V_{1}) \cdot ... \cdot P(V_{n} | V_{1}) \cdot P(V_{1})}{P(V_{2}, V_{3}, ..., V_{n})}$$
Assume $V_{2}, V_{3}, ..., V_{n}$ are conditionally independent given V_{1}
The conditional probabilities can be efficiently computed and stored, and they eliminate sparse data problem

* Assume

- Free and Caps are input variables
- Spam is output variable

Naïve Bayes Assumption:

 $P(\textit{Free},\textit{Caps},\textit{Spam}) = P(\textit{Spam}) \cdot P(\textit{Free}|\textit{Spam}) \cdot P(\textit{Caps}|\textit{Spam})$

***** Say we have the following data:

Free	Caps	Spam	Number of messages
Y	Y	Y	20
Y	Y	N	1
Y	Ν	Y	5
Y	Ν	N	0
N	Y	Y	20
N	Y	N	3
N	Ν	Y	2
N	Ν	N	49
		Total:	100

***** Compute the following tables:

Spam	P(Spam)
Y	$\frac{20+5+20+2}{100} = 0.47$
Ν	$\frac{1+0+3+49}{100} = 0.53$

Maximum Likelihood Estimation (MLE)

The parameters of the model are estimated using a corpus

Free	Spam	P(<i>Free</i> <i>Spam</i>)	Caps	Spam	P(Caps Spam)
Y	Y	$\frac{20+5}{20+5+20+2} \approx 0.5319$	Y	Y	$\frac{20+20}{20+5+20+2} \approx 0.8511$
Y	Ν	$\frac{1+0}{1+0+3+49} \approx 0.0189$	Y	N	$\frac{1+3}{1+0+3+49} \approx 0.0755$
Ν	Y	$\frac{20+2}{20+5+20+2} \approx 0.4681$	Ν	Y	$\frac{5+2}{20+5+20+2} \approx 0.1489$
Ν	Ν	$\frac{3+49}{1+0+3+49} \approx 0.9811$	N	N	$\frac{0+49}{1+0+3+49} \approx 0.9245$

Say want to evaluate the following configuration:

$$P(Free = Y, Caps = N, Spam = N) =$$

$$= P(Spam = N) \cdot P(Caps = N | Spam = N) \cdot P(Free = Y | Spam = N)$$

$$\approx 0.53 \cdot 0.9245 \cdot 0.0189 \approx 0.0093$$
Fetch from lookup table

***** Observe that in the Joint Distribution Model we had:

$$P(Free = Y, Caps = N, Spam = N) = 0.00$$

This illustrates the fact that the Naïve Bayes model is less amenable to the sparse data problem!

* Simulation:

- Configurations are sampled by:
 - Sample the output variable based on its table
 - Sample the input variables using corresponding conditional tables

Inference – Marginalization

$$P(V_1 = x_1, \dots, V_k = x_k) = P(V_1 = x_1)P(V_2 = x_2|V_1 = x_1)P(V_3 = x_3|V_1 = x_1) \dots P(V_k = x_k|V_1 = x_1)$$

Fetch from lookup table

If the partial configuration includes the output variable, then compute marginal configuration as shown

***** Inference – Conditioning – Example

Want to find the probability of message being spam given that header contains word "Free" and not all letters are uppercase

$$P(S = N | F = Y, C = N) =$$

$$\frac{\mathbf{P}(S=N,F=Y,C=N)}{\mathbf{P}(F=Y,C=N)}$$

Fetch from lookup table

$$\mathbf{P}(S = N, F = Y, C = N)$$

= $\mathbf{P}(S = N)\mathbf{P}(F = Y|S = N)\mathbf{P}(C = N|S = N)$

 $= 0.53 \cdot 0.9245 \cdot 0.0189 \approx 0.093$

Inference – Conditioning – Example Continued

$$P(F = Y, C = N) \bigoplus By \text{ definition}$$

$$= P(S = Y, F = Y, C = N) + P(S = N, F = Y, C = N)$$

$$\approx P(S = Y)P(F = Y|S = Y)P(C = N|S = Y) + 0.093$$

$$= 0.47 \cdot 0.5319 \cdot 0.1489 + 0.093$$

$$\approx 0.0465$$
Finally,
Finally,

$$P(S = N | F = Y, C = N) = \frac{0.0093}{0.0465} \approx 0.2$$

$$s = Y$$

$$A(S) = 0.0465$$

$$s = N$$

$$A(S) = 0.0093$$

$$s = N$$

$$arg max_{S} A(s) = Y$$

* Learning

 Maximum Likelihood Estimation: The parameters are estimated using a corpus

Number of Parameters

• A Naïve Bayes model with n variables V_1, \ldots, V_n is described with tables:

	parameters	constraints
table $P(V_1)$	m	1
table $P(V_2 V_1)$	m^2	m
table $P(V_3 V_1)$	m^2	m
:	:	:
table $P(V_n V_1)$	m^2	m
sum	$m+(n-1)m^2$	1+(n-1)m

Total: $O(m^2n)$

***** Joint Distribution Model vs. Fully Independent Model

Thank You!

