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i Markov Chain

-

* Markov chain 1s a discrete random process with
; the Markov property.

4 )

__* The Markov property states that the probability
) distribution for the system at the next step (and in "
3’ fact at all future steps) only depends on the

current state of the system, and not additionally X
on the state of the system at previous steps.
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Hidden Markov Model

-
€+« In aregular Markov model, the state 1s directly

; visible to the observer.

_

* In a hidden Markov model, the state 1s not
) directly visible, but output dependent on the state "
3’ 1S visible.
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* Each state has a probability distribution over the B
possible output tokens. ‘
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Hidden Markov Model
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az23 e X — states

e o * y — observations )
\ b32 * a — state transition (3
(~ b33 iy probabilities '.

b24 \ * b — output
probabilities
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More formally...

. The probability to observe a sequence of length N:

P(Y) = ;'P(Y|X)P(X)
where the sum runs over all possible hidden-node
sequences

g e R
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X =x(0), x(1), ..., x(N-1)
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The output can be
A produced by several
sequences:
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* Brute force calculation of P(Y) 1s insane for most
1 real-life problems. The number of possible hidden |
© node sequences scales exponentially with the
length of the output sequence.

3’ * Algorithms exist to help us depending on the
nature of our problem. .
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Hidden Markov Model

The possibilities...
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Hidden Markov Model
Questions for a HMM

* “Given the parameters of the model, compute a

probability of a particular output sequence”

* “Given the parameters of the model and a

that 1s most likely to have generated that output
sequence”

* “G1ven an output sequence (or a set), find the
most likely set of state transition and output

y
particular output sequence, find a state sequence "
B
probabilities” 1
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Applications:

- Speech recognition

=+ Handwriting recognition

1

a

* Machine translation
» Part-Of-Speech (POS) Tagging
* Gene prediction

etc...
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l Viterbi Algorithm
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-

* The Viterb1 algorithm 1s a dynamic programming
algorithm for finding the most likely sequence of
hidden states (the Viterbi path) that results 1n a
sequence of observed events.
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We need to maintain two dynamic programming
; tables:

* Probability of the best path:

rfj(i + 1) = f:IliH\\ rf_f-(f_]ﬁ [1J|r!] hzﬂfﬁ;_ﬂ.?'j]

 State transitions of the best path. 5

» Compute recursively from the beginning.
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* Memory efficient. We only need to store the best
1 path.

» Fast, and therefore, practical.
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Part-Of-Speech

< . Represent a sequence of tags as a Markov Chain.

* Observations Y: sequence of words yi,...,y~

=+ Goal: find the most probable sequence of tags:

}f X1,...,XN
il
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HMM POS

. |
k- Assumptions:

-« Limited Horizon P(xs+:[X1,...,Xn) = P(Xn+1|Xn) y
= (words are chosen independently from each other)

f * Time Invariant (Stationary) P(X»+1|X») = P(X2|X1) '.
.| (dependency does not change over time) =

\> o A state (POS) generates a word. We assume it
: depends only on one state.

‘ P(ya|X1,....XN,Y1,...yn-1) =P(yn|Xn)

2 (Y)Y L A v cl),’l



HMM POS
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L
“Fed raises interest rates 0.5% 1n effort to control )’
inflation.”

Let us consider the following sentence:

NY Times Headlinel7 May 2000 '.
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HMM POS
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Top row (hidden states) are POS tags.

Bottom row (words) are output observations.
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Laplace Smoothing

)
Estimating probabilities works well when you g
have a lot of data. But lexical probabilities have

very sparse distributions. Some kind of smoothing ¥

1s required. '-
The Brown corpus contains about 1,000,000
words. But 1t contains only 49,000 unique words g

and over 40,000 of those words occur less than 5
times! a

Laplace Smoothing: Add 1 to all frequency counts 1
to pretend we've seen everything once, and then

b« [e-normalize the probability space. )l
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Laplace Smoothing

L

V]
o Let N=) c(w;) whereV =vocabulary size N
=+ Without sn%oommg: Pt} — % |
« °* We compute the vocabulary size for each term: '.

new c(wy) = (c(ws) + 1) * xorr

* New probability estimates:

new_c(wy)

new_P(w,) =
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Part-Of-Speech
TN L
indings:
-« English language tagging accuracy of 96%. Y

=+ Chinese language tagging accuracy of 94.78%. '_
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