

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

1

Unification-‐based
approach to NLP

final parsing and semantics
examples; Unification-‐based
approach to NLP; bits of
historL, First-‐order predicate
logic; unification; Resolution

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

2

CFG Parsing example

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

3

A top-down, depth-first, left to right parser

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

4

A top-down, depth-first, left to right parser, example (1)

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

5

A top-down, depth-first, left to right parser, example (2)

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

6

A top-down, depth-first, left to right parser, example (3)

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

7

A top-down, depth-first, left to right parser, example (3)

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

8

Big Problem: PP attachment ambiguity

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

9

Solutions

•  Use a Probabilistic Parser (covered later in class)
•  Use semantics

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

10

Example again (w/Earley parser) “Book that flight”

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

11

Example again (w/Earley parser) “Book that flight” (2)

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

12

Example again (w/Earley parser) “Book that flight” (3)

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

13

Example again (w/Earley parser) “Book that flight” (4)

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

14

Parsing with Features

3 views of a context-free rule
•  generation (production): S → NP VP
•  parsing (comprehension): S ← NP VP
•  verification (checking): S = NP VP

•  Today you should keep the third, declarative perspective in mind.

•  Each phrase has
–  an interface (S) saying where it can go
–  an implementation (NP VP) saying what’s in it

•  To let the parts of the tree coordinate more closely with one another, enrich
the interfaces:

 S[features…] = NP[features…] VP[features…]

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

15

Example
Verb → thrills
VP→ Verb NP
S → NP VP

NP Verb

VP NP

S

A roller coaster thrills every teenager

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

16

3 common ways to use features

morphology of a single word:
Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills

projection of features up to a bigger phrase
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP

provided α is in the set TRANSITIVE-VERBS

agreement between sister phrases:
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…]

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

17

3 Common Ways to Use Features

Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…]

NP Verb

VP NP

S

A roller coaster thrills every teenager

(generation
perspective)

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

18

Uses of Grammar

•  Prescriptive - Identify speaker’s socioeconomic class &

education level; Identify level of formality of a particular
usage

•  Descriptive - Understand how people produce &
understand language; Identify similarities & differences
across languages; Development of language technologies

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

19

Competence vs. Performance

The Distinction
•  Competence - knowledge of language
•  Performance - how the knowledge is used

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

20

Acceptability vs. grammaticality

• A sentence is acceptable if native speakers say it sounds

good.
• A sentence is grammatical (with respect to a particular

grammar) if the grammar licenses it.
• Linguists are sometimes sloppy about the difference.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

21

The Generative Revolution

•  Noam Chomsky’s work in the 1950s radically changed

linguistics, making syntax central.
•  Chomsky has been the dominant figure in linguistics ever

since

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

22

Main Tenets of Generative Grammar

• Grammars should be formulated precisely and explicitly
• Languages are infinite, so grammars must be tested

against invented data, not just attested examples.
• The theory of grammar is a theory of human linguistic

abilities.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

23

Some of Chomsky’s Controversial Claims

• The superficial diversity of human languages masks their

underlying similarity.
• All languages are fundamentally alike because linguistic

knowledge is largely innate.
• The central problem for linguistics is explaining how

children can learn language so quickly and easily.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

24

Relationship of Some Syntactic Theories
Other Theories Early Transformational Grammar

 (1955-1964)

 Standard Theory
 (1964-1967)

 GB GPSG Realistic TG Generative Semantics
(1981-1993) (1979-1985) (1978-1980) (1966-1975)

 Other HPSG LFG Other

 (1986-present) (1980-present)

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

25

Logic Refresher

 Propositional Calculus
 Extensively developed by Whitehead and Russell in their early 20th
century classic Principia Mathematica, this system is also known as
propositional logic, sentential calculus, and (informally) as symbolic
logic.

 The basic entities, or primitives, in the propositional calculus are
propositions (sentences) which are symbolized p, q, r, s, ... A
proposition symbol stands for an assertion (the sky is blue, it is raining,
x=y) which may be true (T) or false (F). Propositions may be combined
into more complex assertions by the use of operators, analogous to
the familiar arithmetic operators of addition, multiplication, and so on.
These logical connectives, however, combine propositions into logical
expressions whose truth or falsity is a function of the truth value (T or
F) of each component proposition.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

26

Logic Refresher

 Propositional Calculus (cont.)
 In general, logical connectives map combinations of n propositions onto
the set {T, F}. When n=1, the only mapping of interest reverses the truth
variable of a proposition. We symbolize this negation operator with a
minus sign and read -p (or ~p) as not p.

 When n=2 (which is as high as we need to go) there are 16 possible
binary logical connectives (comprising all the distinct ways truth values
can be assigned to the four possible pairs of proposition values). The
table below shows the mappings for the conjunction (p&q, p and q),
disjunction (pvq, p or q), and implication (p→q, p implies q) operators.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

27

Logic Refresher

 Propositional Calculus (cont.)

 A formal means of determining whether more complex expressions are
constructed properly is given by the following recursive definition of well-
formed-formulas (wffs):
1. A proposition is a wff.
2. If A and B are wffs, then so are (-A), (A&B), (AvB), and (A→B).
3. There are no other wffs.

p q p&q pvq p_ q
T T T T T
T F F T F
F T F T T
F F F F T

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

28

Logic Refresher

 Predicate Calculus extends propositional calculus permitting individuals,
relations between individuals, and properties of individuals and sets of
individuals. We continue to denote propositions by p, q, r, ... and to use the
same set of unary and binary logical connectives.

 To those structures we add individual constants, denoted a, b, c, ..., which
symbolically identify particular items of the domain of discourse, D (e.g.,
people, numbers, days of the week). We use the last letters of the alphabet (z,
y, x, ...) to denote individual variables which may range over all the individuals
in D. Functions of one or more variables and/or constants will be denoted f, g,
h, ... and will map objects or groups of objects in D into other objects in D.
Thus in the domain of numbers we might represent negation by g(x), addition
by f(x,y), and three way multiplication by h(x,y,z), so that h(g(2), 6, f(3,1))
would denote -48. Any expression of this sort, which evaluates to an object or
set of objects in D, is known as a term. Defined recursively, a term is (1) a
constant, (2) a variable, or (3) a function of terms.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

29

Logic Refresher

 Predicate calculus gets its name from the entities used to describe or relate
terms. Predicates are denoted P, Q, R, ... and map terms onto the truth values
T and F. Thus, if D is people, P(a) might assert that individual a has red hair,
while R(c,b) might claim that b is a sibling of c. Any predicate of terms (or
simple proposition) in the predicate calculus is known as an atomic formula.
 The last group of PC entities consists of two quantifiers. The universal
quantifier, denoted (x) and read for all x, when applied to a formula asserts
that the formula is true for all possible substitution instances of the variable x
(the entire domain D). The existential quantifier, denoted (∃x) and read there
exists an x, asserts that the formula is true for at least one of the possible
values of x. In general a quantifier does not apply to all occurrences of its
variable in a formula but only to those which fall within its range or scope
(delimited if necessary by appropriate parentheses). Such variables are said
to be bound by the quantifier while other occurrences of the same variable
may be free of quantification.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

30

Logic Refresher
 We define recursively the well-formed-formulas (wffs) of the PC, as follows:

1.  Any atomic formula is a wff.
2.  If A and B are wffs then so are (-A), (A&B), (AvB), and (A→B).
3.  If A is a wff and x is a (free) variable in A, then ((x)A) and ((∃x)A) are wffs.
4. There are no other wffs.

 Quantifiers are to be evaluated first, along with negations. Thus the scope of
(x) in (x)-P(x)vQ(x) is just -P(x); the x in Q(x) is a free variable.

 Interpretation of PC formulas requires specification of the domain, D, an
assignment of elements of D to individual constants, and assignments of
meanings (mappings) with respect to D to all functions and predicates.
 Just as for the propositional calculus, PC formulas are classed as valid (true
for all interpretations), satisfiable (true for at least one interpretation) and
inconsistent (true for no interpretations). Two predicate formulas are
equivalent ⇔ they have identical truth values under all interpretations.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

31

Prenex normal form

 A useful type of formula equivalent to any predicate calculus formula is
its prenex normal form. In this form all quantifiers have been swept to
the front of the formula, so that each of them has all the rest of the
formula (called the matrix) as its scope. The most awkward aspect of
converting formulas to prenex normal form can be moving negation
through quantifiers where the following (sensible) equivalences apply:

 -(x)A=(∃x)-A, -(∃x)A=(x)-A

 Since conversion to prenex normal form is an implicit step in preparing
formulas for resolution, we will illustrate the method next.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

32

Clause form

 In 1965 the logician J. A. Robinson reported the
development of a new inference rule for the predicate
calculus. He also proved that his resolution principle was
sound (producing only valid wffs) and complete (producing
all valid wffs). While not especially convenient or intuitive
for people, the resolution principle is ideally suited to
computer implementation and forms the basis for almost
all current research in theorem proving, logic programming
and computational linguistics.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

33

Unification & Resolution
 A proof that some formula W logically follows from a set of formulas S is
equivalent to the claim that every interpretation satisfying S also satisfies W. If
such is the case then no interpretation can satisfy the union of S and -W.
Resolution theorem proving tries to show that union is unsatisfiable by
deriving a special formula called the null clause or resolvent from it. The
method is thus a special form of proof by contradiction.
 Before resolution theorem proving can be applied to a theorem, preliminary
steps must be executed. Premises and the conclusion to be proved stated in
English must be expressed in PC. Second, the conclusion to be proved must
be negated. Third, all formulas including the negated conclusion must be
converted to clause form, a formula in prenex normal form with no quantifiers
shown because existential quantifiers have been eliminated and all variables
are assumed to be universally quantified. The matrix of a clause consists
solely of disjunctions of atomic formulas and their negations, known
collectively as literals. Conversion to clause form is by the 8 algorithm.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

34

The Eight-Step Algorithm
Using the unusually complex formula

 (x)[P(x)→[(y)Q(x,y)&-(y)(P(y)→R(f(x,y)))]]. []

 Step 1: Eliminate Implication Signs - Using p→q = -pvq, [] becomes

(x)[-P(x)v[(y)Q(x,y)&-(y)(-P(y)vR(f(x,y)))]]

 Step 2: Reduce Scopes of Negation Signs - We then use equations p&q = -(-
pv-q), pvq = -(-p&-q) and -(x)A=(∃x)-A, -(∃x)A=(x)-A to reduce the scopes of
negation signs to single predicates:

(x)[-P(x)v[(y)Q(x,y)&(∃y)(P(y)&-R(f(x,y)))]]
 Step 3: Standardize Variables - Now we rename quantified variables, if
necessary, so that each quantifier has a unique variable:

(x)[-P(x)v[(y)Q(x,y)&(∃z)(P(z)&-R(f(x,z)))]]

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

35

The Eight-Step Algorithm
Using the unusually complex formula

 (x)[P(x)→[(y)Q(x,y)&-(y)(P(y)→R(f(x,y)))]]. []

 Step 4: Eliminate Existential Quantifiers - For all such quantifiers which do not
fall within the scope of universal quantifiers we may simply replace (∃w)P(w)
with P(a) where 'a' is a constant whose existence the quantifier asserts. In a
case like (v)(∃w)Q(w), there is some (possibly distinct) w for every v, so we
must write (v)Q(h(v)) where h is a function that selects the w which exists for
each v. Constants and functions introduced in this step must be new to the
formula. [functions introduced here are called Skolem functions]. Our example
becomes:

(x)[-P(x)v[(y)Q(x,y)&(P(g(x))&-R(f(x,g(x))))]]

•  Step 5: Convert to Prenex Form - This conversion is accomplished by moving
all (universal) quantifiers to the front of the formula:

•  (x)(y)[-P(x)v[Q(x,y)&P(g(x))&-R(f(x,g(x))))]]

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

36

The Eight-Step Algorithm
Using the unusually complex formula

 (x)[P(x)→[(y)Q(x,y)&-(y)(P(y)→R(f(x,y)))]]. []

 Step 6: Put Matrix in Conjunctive Normal Form - Converting from prenex form
to conjunctive normal form yields

•  (x)(y)[(-P(x)vQ(x,y))&(-P(x)vP(g(x)))&(-P(x)v-R(f(x,g(x))))]

•  Step 7: Eliminate Universal Quantifiers - Dropping the universal quantifiers
(we assume that all variables at this point are universally quantified) leaves us

•  [(-P(x)vQ(x,y))&(-P(x)vP(g(x)))&(-P(x)v-R(f(x,g(x))))]

•  Step 8 :Eliminate & Signs - Eliminate the conjunctions by separating the
formula into distinct clauses, each of which will be a disjunction of literals:

•  -P(x)vQ(x,y) -P(x)vP(g(x)) -P(x)v-R(f(x,g(x)))

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

37

Unification Algorithm
•  Given a set of clauses derived from the premises and negated

conclusion of a theorem, the resolution principle generates new
clauses by resolving pairs of clauses in the set. These new clauses
are added to the set and may be used in the generation of further
resolvents. If the original set of clauses is unsatisfiable (the theorem is
provable) resolution will eventually produce a clause containing no
literals, the so-called null resolvent.

•  To produce a resolvent of two available clauses we require that at
least one atomic formula appear with opposite signs in the two parent
clauses. The resolvent then consists of a disjunction of all other literals
in both parent clauses, after removal of the literal(s) differing only in
sign. Thus from the clauses -P(x)vR(x) and -R(x)v Q(x) we may infer
the resolvent -P(x)vQ(x) by combining the literals left after removing
R(x) and -R(x).

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

38

Unification Algorithm
•  In the example the coincidental appearance of R(x) and -R(x) in the parent

clauses was fortunate. Usually it is necessary to perform substitutions in the
parent clauses. The process of finding suitable substitutions is called
unification. If a set of clauses can be unified (i.e., can produce resolvents), a
procedure called the unification algorithm can be used to find the simplest
substitution (or most general unifier) that does the job. The details of
unification are given now.

•  The terms of a literal can be variable letters, constant letters, or expressions
consisting of function letters and terms. A substitution instance of a literal is
obtained by substituting terms for variables in the literal. Thus four instances
of P(x,f(y),b) are

•  P(z,f(w),b)
•  P(x,f(a),b)

•  P(g(z),f(a),b)
•  P(c,f(a),b)

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

39

Unification Algorithm
•  The first instance is called an alphabetic variant of the original literal because

we have merely substituted different variables for the variables appearing in
P(x,f(y),b). The last of the four instances mentioned above is called a ground
instance or atom since none of the terms in the literal contains variables.

•  In general, we can represent any substitution by a set of ordered pairs θ =
{(t1,v1), (t2,v2),..., (tn,vn)}. The pair (ti,vi) means that the term ti is substituted for
variable vi throughout. We insist that a substitution be such that each
occurrence of a variable have the same term substituted for it; that is i≠j
implies vi≠vj, i,j=1,...,n. The substitutions used above in obtaining the four
instances of P(x,f(y),b) are

•  α = {(z,x), (w,y)}
•  β = {(a,y)}
•  γ = {(g(z),x), (a,y)}
•  δ = {(c,x), (a,y)}

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

40

Unification Algorithm
•  To denote a substitution instance of a literal P using a substitution θ, we write

P:θ. Thus P(z,f(w),b) = P(x,f(y),b):α. The composition of two substitutions α
and β is denoted by α|β and is the substitution obtained by applying β to the
terms of α and then adding any pairs of β having variables not occurring
among the variables of α. Thus

•  {(g(x,y),z)}{(a,x),(b,y),(c,w),(d,z)}={(g(a,b),z),(a,x),(b,y),(c,w)}
•  It can be shown that applying α and β successively to a literal P is the same

as applying α|β to P, that is, (P:α):β = P:α:β. It can also be shown that the
composition of substitutions is associative:

•  (α|β)|γ = α|(β|γ)

•  If a substitution θ is applied to every member of a set {Li} of literals, we denote
the set of substitution instances by {Li}:θ. We say that a set {Li} of literals is
unifiable if there exists a substitution q such that L1:θ = L2:θ = L3:θ = etc. In
such a case θ is said to be a unifier of {Li} since its use collapses the set to a
singleton.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

41

Unification Algorithm
 As an example, θ = {(a,x), (b,y)} unifies {P(x,f(y),b), P(x,f(b),b)} to yield
{P(a,f(b),b)}.

•  Although θ = {(a,x), (b,y)} is a unifier of the set {P(x,f(y),b), P(x,f(b),b)},
in some sense it is not the simplest unifier. We really did not have to
substitute a for x to achieve unification. The most-general (or simplest)
unifier [mgu] λ of {Li} has the property that if θ is any unifier of {Li}
yielding {Li}:θ, then there exists a substitution δ such that {Li}:λ|δ =
{Li}:θ. Furthermore, the common instance produced by a most-general
unifier is unique except for alphabetic variants.

•  There is an algorithm called the unification algorithm that produces a
most-general unifier λ for any unifiable set {li} of literals and reports
failure when the set is not unifiable.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

42

Unification Algorithm
 The algorithm starts with the empty substitution and constructs, step-by-step, a most
general unifier if one exists. Suppose at the kth step, the substitution so far produced is
λk. If all the literals in the set {Li} become identical after employing the substitution λk on
each of them then λ = λk is a most-general unifier of {Li}. Otherwise we regard each of
the literals in {Li}: λkk as a string of symbols and detect the first symbol position in which
not all of the literals have the same symbol. We then construct a disagreement set
containing the well-formed expressions from each literal that begins with this symbol
position. (A well-formed expression is either a term or a literal). Thus, the disagreement
set of

{P(a,f(a,g(z)),h(x)),P(a,f(a,u),g(w))} is {g(z),u}

 Now the algorithm attempts to modify the substitution λk in such a way as to make two
elements of the disagreement set equal. This can be done only if the disagreement set
contains a variable that can be set equal to one of its terms. (If the disagreement set
contains no variables at all, {Li} cannot be unified. For example, we note that at the first
step of the algorithm the disagreement set may be {Li} itself, and then certainly then no
element is a variable).

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

43

Unification Algorithm
 Let sk be any variable in the disagreement set and let tk be a term
(possibly another variable) in the disagreement set such that tk does
not contain sk. (If no such tk exists, then again {Li} is not unifiable).
Next we create the modified substitution λk+1 = λk{(tk,sk)} and perform
another step of the algorithm.

 It can be proven (Robinson, 1965) that the unification algorithm finds a
most-general unifier of a set of unifiable literals and reports failure
when the literals are not unifiable.

 As examples, we list the most common substitution instances (those
obtained by the mgu) for a few sets of literals.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

44

Unification Algorithm

 We consider the legal substitutions that may be made in a pair of clauses
without altering their truth values. In order to avoid confusion (and error) from
coincidentally identical variable names, substitution should be applied to
clauses which have no variable names in common. If this is not already the
case we simply rename some or all of the variables in one of the clauses. Now
since all variables are understood to be universally quantified, each specifies
any object in the domain. We can therefore substitute any new or existing
variable name for all of the occurrences of any given name in order to bring
literals in the clauses into closer correspondence.

Set Of Literals Most-general Common
Substitution Instances

{P(x), P(a)} P(a)

{P(f(x),y,g(y)), P(f(x),z,g(x))} P(f(x),x,g(x))
{P(f(x,g(a,y)),g(a,y)),P(f(x,z),z)} P(f(x,g(a,y)),g(a,y))

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

45

Unification Algorithm
 We can substitute any constant or function for all the instances of any variable in the
two clauses, since such substitutions simply limit the range to one or more of the objects
for which the variable stood. We cannot however make any substitutions which would
change or increase the identified set of objects, since such substitutions could alter the
truth value of the clause. Thus we may not substitute variables for functions or
constants, nor may we replace any constant or function with any other constant or
function.

 To illustrate how substitution can be used in producing resolvents, consider the clauses

 (1) -P(a) v Q(f(x),y,c) v R(y)
 (2) S(x,y) v P(x) v -Q(y,b,c).
 Renaming variables, by application of primes to variables in (2) which also happen to
appear in (1), gives us
 (2a) S(x',y') v P(x') v -Q(y',b,c).

 Now we can substitute a for x' in (2a) producing

(2b) S(a,y') v P(a) v -Q(y',b,c).

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

46

Unification Algorithm
 which can be resolved with (1) to give

 (3) Q(f(x),y,c) v R(y) v S(a,y') v -Q(y',b,c)

 Alternatively we might substitute b for y in (1) and f(x) for y’ in (2a),
giving the different resolvent

 (4) -P(a) v R(b) v S(x',f(x)) v P(x')

 Thus different substitutions can give different resolvents. It should also
be noted that (3) and (4) can be further resolved against the original
formulas, with appropriate further substitutions.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

47

Unification Algorithm - example
 Consider the following theorem: If there are no compassionate
professors, and if all competent professors are compassionate, then
no competent professor exists. If we let S(x) indicate that x is
compassionate, and P(x) that x is competent, then the predicate
calculus formulas for the premise are
 (1) -(∃x)S(x)
 (2) (y)(P(y)→S(y)),
 while the denial of the conclusion is - -(∃z) (P(z)) or just
 (3) (∃z)(P(z)).
 (Note that we have avoided duplication of variable names to reduce
the necessity for renaming prior to substitution.) In clause form,
 (1') -S(x) (2') -P(y) v S(y) (3') P(a)

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

48

Unification Algorithm - another example
 Substitution can be used in producing resolvents; consider the two clauses

 (1) -P(a) v Q(f(x),y,c) v R(y)
 (2) S(x,y) v P(x) v -Q(y,b,c).

 Renaming variables, by application of primes to variables in (2), which also
happen to appear in (1), gives us

 (2a) S(x',y') v P(x') v -Q(y',b,c).
 Now we can substitute a for x' in (2a) producing

 (2b) S(a,y') v P(a) v -Q(y',b,c).

 which can be resolved with (1) to give

 (3) Q(f(x),y,c) v R(y) v S(a,y') v -Q(y',b,c)

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

49

Unification Algorithm - another example
 Alternatively, we might substitute b for y in (1) and f(x) for y’ in (2a),
giving the different resolvent

 (4) -P(a) v R(b) v S(x',f(x)) v P(x')

 Thus different substitutions can give different resolvents. It should
also be noted that (3) and (4) can be further resolved against the
original formulas with appropriate further substitutions.

 With substitution of x for y in (2'), resolution of (1') and (2') yields just
-P(x). Substituting a for x in this resolvent and using (3') as the other
parent yields the null resolvent, proving the theorem.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

50

Answer extraction using unification

 Consider the following: If Marcia goes wherever John goes, and John is at
school, where is Marcia? The facts might simply be translated into the set
S of wffs

 1. (x){AT(John,x) → AT(Marcia,x)} and 2. AT(John,school)

 where the predicate letter AT is interpreted obviously. The question where
is Marcia? could be answered if we could first prove that the wff

 (∃x)AT(Marcia,x)

 followed from S and could then find an instance of the x that exists. If the
question can be answered from the facts given, the wff created in this
manner will logically follow from S. After obtaining a proof, we then try to
extract an instance of the existentially quantified variable to serve as an
answer.

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

51

Answer extraction using unification
 The proof is obtained by first negating the wff to be proved, adding
this negation to the set S, converting all of the members of this
enlarged set to clause form, and then, by resolution, showing that
this set of clauses is unsatisfiable. A refutation tree for our example
is shown in Figure 3-1. The wff to be proved is called the conjecture
and the clauses resulting from the wffs in S are called axioms. Note
that the negation of (∃x)AT(Marcia,x) produces (x)[-AT(Marcia,x)]
whose clause form is simply -AT(Marcia,x).

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

52

Answer extraction using unification

 Next, we must extract an answer to the question Where
is Marcia? from this refutation tree. The process for doing
so in this case is as follows:

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

53

Answer extraction using unification

 1. Append to each clause arising from the negation of the
 conjecture its own negation. Thus -AT(Marcia,x) becomes the
 tautology -AT(Marcia,x)vAT(Marcia,x).

 2. Following the structure of the refutation tree, perform the same
 resolution as before until some clause is obtained at the root. In
 our example this process produces the proof tree shown in
 the figure below with the clause AT(Marcia,school) at the root.

 3. Convert the clause at the root back to the conventional
 predicate calculus form and use it as an answer statement. This
 wff can then be translated back into English, say, as an answer
 to the question. In our example it is obvious that
 AT(Marcia,school) is the appropriate answer to the problem

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

54

Answer extraction using unification

CSE6339 3.0 Introduction to Computational Linguistics

Mondays, Wednesdays 10:00-11:20 – LAS 3033
Winter Semester, 2014

Inst%&ctor: Nick Cercone -‐ 3050 CSEB -‐ nick@cse.yorku.ca

55

Concluding Remarks

Out of time

My old clock used to tell the time

and subdivide diurnity;

but now it's lost both hands and chime

and only tells eternity.

