CSCI 4152/6509 — Natural Language Processing

30-Sep-2009

Lecture 9: Vector Space Model

Room: FASS 2176 Time: 11:35 – 12:25

Previous Lecture

- Aside: WordNet web site
- lexical semantics (continued):
 - metonymy,
 - WordNet resource,
 - semantic relations between words,
- semantic compositionality,
- semantic roles;
- Part II: Statistical approach to NLP,
- logical and plausible reasoning,
- two paradigms of NLP: logical and plausible,
- counting words and n-grams, Zipf's law,
- Elements of information retrieval,
- basic task definition of ad-hoc retrieval, typical IR system architecture

Typical IR System Architecture

Steps in Document and Query Processing

- stop-word removal
- rare word removal (optional)
- stemming
- optional query expansion
- document indexing
- document and query representation; e.g. vectors

Vector Space Model in IR

- after choosing a global set of terms $\{t_1, t_2, \dots, t_m\}$, documents and queries are represented as vectors of weights:

 $\vec{d} = (w_{1j}, w_{2j}, \dots, w_{mj}) \quad \vec{q} = (w_{1q}, w_{2q}, \dots, w_{mq})$

- What are the weights? They could be binary (1 or 0), or term frequency, or something else.
- A standard choice is: tfidf term frequency inverse document frequency weights

$$tfidf = tf \cdot \log\left(\frac{N}{df}\right)$$

- tf is frequency (count) of a term in document, which is sometimes log-ed as well
- df is document frequency, i.e., number of documents in the collection containing the term

Similarity Measure

- Cosine similarity measure

Term-by-Document Matrix

- Term-by-Document matrix

	d_1	d_2		d_n
t_1	w_{11}	w_{12}		w_{1n}
t_2	w_{21}	w_{22}		w_{2n}
÷	:	:	÷	:
:	:	:	•	:
t_m	w_{m1}	w_{m2}	• • •	w_{mn}

- reducing number of dimensions
 - stemming and stop-words
 - feature selection
 - Latent Semantic Analysis

Latent Semantic Analysis

- method for term-by-document dimensionality reduction
- singular value decomposition: $M_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^T$
- example with four terms and two documents
- closest by Frobenius norm matrix of rank $\leq k$ is $M_{m \times n}^{(k)} = U_{m \times m} \Sigma_{m \times n}^{(k)} V_{n \times n}^{T}$ - concept and document representations