CSCI 4152/6509 - Natural Language Processing

Lecture 12: Probabilistic Modeling

Room: FASS 2176
Time: 11:35-12:25

Previous Lecture

- Aside: Introduction to IR on-line bookhttp://nlp.stanford.edu/IR-book/html/htmledition/ irbook.html
- Evaluation methods for classification (cont.): n -fold cross-validation,
- Parser evaluation:
- PARSEVAL measures, labeled and unlabeled precision and recall, F-measure;
- Text clustering:
- task definition, the simple k-means method, hierarchical clustering, divisive and agglomerative clustering;
- Evaluation of clustering:
- inter-cluster similarity, cluster purity, use of entropy or information gain;
- CNG - Common N-Grams classification method

6.6 CNG-Common N-Gram analysis for text classification

- Method based on character n-grams
- Language independent
- Based on creating n-gram based author profiles
- kNN method (k Nearest Neighbours)
- similarity measure:

$$
\begin{equation*}
\sum_{g \in D_{1} \cup D_{2}}\left(\frac{f_{1}(g)-f_{2}(g)}{\frac{f_{1}(g)+f_{2}(g)}{2}}\right)^{2}=\sum_{g \in D_{1} \cup D_{2}}\left(\frac{2 \cdot\left(f_{1}(g)-f_{2}(g)\right)}{f_{1}(g)+f_{2}(g)}\right)^{2} \tag{2}
\end{equation*}
$$

where $f_{i}(g)=0$ if $g \notin D_{i}$.

7 Elements of Probability Theory

- simple event

Examples: rolling a dice, choosing a letter
$\mathrm{P}\left({ }^{\prime} \mathrm{a}^{\prime}\right)=?$; probability of choosing a letter; $1 / 26 \approx 0.04$. However, in a typical English text, it is about 0.08 .
This is a brief and intuitive review of some basic notions from the theory of probability. The probability can be seen as a function that maps a set of possible experiment outcomes to a real number between 0 and 1 , including 0 and 1 , i.e. to a number from the interval $[0,1]$. We always have in mind certain space of outcomes Ω and we assume that in each experiment (trial, instance, or model configuration), one of those outcomes will happen. The probability that one of the outcomes from a set $A(A \subset \Omega)$ will happen, is denoted $\mathrm{P}(A)$. A set of outcomes A is called an event.
The basic properties of the probability, known as the probability axioms, are:

- (Nonnegativity) $\mathrm{P}(A) \geq 0$, for any event A
- (Additivity) for disjoint events A and B, i.e., if $A, B \subset \Omega$ and $A \cap B=\emptyset$, then

$$
\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)
$$

More generally, for a possibly infinite sequence of disjoint events A_{1}, A_{2}, \ldots,

$$
\mathrm{P}\left(A_{1} \cup A_{2} \cup \ldots\right)=\mathrm{P}\left(A_{1}\right)+\mathrm{P}\left(A_{2}\right)+\ldots
$$

- (Normalization) $\mathrm{P}(\Omega)=1$, where Ω is the entire sample space.
- some consequences of the above axioms are: $\mathrm{P}(\emptyset)=0$ and $\mathrm{P}(\Omega-A)=1-\mathrm{P}(A)$
- independent events (definition): $\mathrm{P}(A, B)=\mathrm{P}(A) \cdot \mathrm{P}(B)$
- use of comma in: $\mathrm{P}(A, B)=\mathrm{P}(A \cap B)$

Example: choosing two letters vs. choosing two consecutive letters
choosing t : $0.1, \mathrm{~h}: 0.07$; choosing ' t ' and ' h ' independently: 0.007 ; consecutive 'th' $=0.04$; not independent events

- random variables, independent random variables

Two random variables V_{1} and V_{2} are independent if:

$$
\mathrm{P}\left(V_{1}=x_{1}, V_{2}=x_{2}\right)=\mathrm{P}\left(V_{1}=x_{1}\right) \cdot \mathrm{P}\left(V_{2}=x_{2}\right)
$$

- conditional probability

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A, B)}{\mathrm{P}(B)}
$$

- expressing independency using conditional probability

Two events A are B are independent if and only if:

$$
\mathrm{P}(A \mid B)=\mathrm{P}(A)
$$

This is an alternative definition of independent events.

- Bayes' theorem (one form):

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(B \mid A) \cdot \mathrm{P}(A)}{\mathrm{P}(B)}
$$

- Conditionally independent variables

Random variables V_{1} and V_{2} are conditionally independent given V_{3} if $\mathrm{P}\left(V_{1}=x_{1}, V_{2}=x_{2} \mid V_{3}=x_{3}\right)=$ $\mathrm{P}\left(V_{1}=x_{1} \mid V_{3}=x_{3}\right) \mathrm{P}\left(V_{2}=x_{2} \mid V_{3}=x_{3}\right)$ for all x_{1}, x_{2}, x_{3}. Equivalently, if $\mathrm{P}\left(V_{1}=x_{1} \mid V_{2}=x_{2}, V_{3}=x_{3}\right)=$ $\mathrm{P}\left(V_{1}=x_{1} \mid V_{3}=x_{3}\right)$ for all x_{1}, x_{2}, x_{3}.

8 Probabilistic Modelling

8.1 Generative Models

- also known as Forward generative model
- Bayesian inference
- one way of representing knowledge with a probabilistic model

Bayesian Inference

- principle of evidence combination: Bayesian inference

$$
\begin{aligned}
\text { conclusion } & =\underset{\text { possible truth }}{\arg \max } P(\text { possible truth } \mid \text { evidence }) \\
& =\underset{\text { possible truth }}{\arg \max } \frac{P(\text { evidence } \mid \text { possible truth }) P(\text { possible truth })}{P(\text { evidence })} \\
& =\underset{\text { possible truth }}{\arg \max } P(\text { evidence } \mid \text { possible truth }) P(\text { possible truth })
\end{aligned}
$$

- application to speech recognition: acoustic model and language model

