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CSCI 4152/6509 — Natural Language Processing 14-Oct-2009

Lecture 14: Fully Independent Model
Room: FASS 2176
Time: 11:35 – 12:25

Previous Lecture
– Probabilistic modeling:

– random variables,
– random configurations,
– computational tasks in probabilistic modeling,

– Spam detection example,
– Joint distribution model,
– Drawbacks of joint distribution model

8.5 Fully Independent Model
In a fully independent model we assume that all variables are independent, i.e.,

P(V1 =x1, ..., Vn =xn) = P(V1 =x1) · · ·P(Vn =xn).

which is the evaluation formula, (1. Evaluation)
It is an efficient model with a small number of parameters: O(nm)
Drawback: usually a too strong assumption
Translated into the spam example:

P(Free, Caps, Spam) = P(Free) · P(Caps) · P(Spam)

This yields a very restricted form of joint distribution where we can represent each component distribution sepa-
rately. For a random variable Vj , one can represent P(Vj = x) by a lookup table with m parameters (minus one
constraint). Let pj,x denote the probability Vj takes on value x. That is, pj,x = P(Vj = x). These numbers
are positive and satisfy the constraint

∑m
x=1 pj,x = 1 for each j. Thus, the joint distribution over V1, ..., Vn can

be represented by n × m positive numbers minus n constraints. The previous tasks (simulation, evaluation, and
inference) now become almost trivial. Admittedly this is a silly model as far as real applications go, but it clearly
demonstrates the benefits of structure (in its most extreme form).

Example: Spam Detection (continued)
The fully independent model is almost useless in our spam detection example because it assumes that the three
random variables: Caps, Free, and Spam are independent. In other words, its assumption is that knowing whether a
message has a capitalized subject or contains the word ‘Free’ in the subject cannot help us in determining whether
the message is spam or not, which is not in accordance with our earlier assumption.
Anyway, let us see what happens when we apply the fully independent model to our example. From the training
data:
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Free Caps Spam Number of messages
Y Y Y 20
Y Y N 1
Y N Y 5
Y N N 0
N Y Y 20
N Y N 3
N N Y 2
N N N 49

Total: 100

we generate the following probability tables of independent variables:
Free P(Free)

Y 20+1+5+0
100 = 0.26

N 20+3+2+49
100 = 0.74

and similarly,

Caps P(Caps)
Y 20+1+20+3

100 = 0.44
N 5+0+2+49

100 = 0.56
and

Spam P(Spam)
Y 20+5+20+2

100 = 0.47
N 1+0+3+49

100 = 0.53

Hence, in this model any message is a spam with probability 0.47, no matter what the values of Caps and Free are.
This is example of MLE Learning (computational task 4.).
As an example of evaluation, the probability of configuration (Caps = Y, Free = N, Spam = N) in the fully
independent model is:

P(Free = Y, Caps = N, Spam = N) =
= P(Free = Y ) · P(Caps = N) · P(Spam = N) = 0.26 · 0.56 · 0.53
= 0.077168 ≈ 0.08

2. Simulation
For j = 1, ..., n, independently draw xj according to P(Vj =xj) (using the lookup table representation). Conjoin
(x1, ..., xn) to form a complete configuration.

3. Inference
3.a Marginalization
The probability of a partial configuration (x1, . . . , xk) is

P (x1, . . . , xk) = P (x1) · . . . · P (xk)

This formula can be obvious, but it can also be derived.
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Derivation of Marginalization Formula

P(V1 =x1, ..., Vk =xk) =
X
yk+1

· · ·
X
yn

P(V1 =x1, ..., Vk =xk, Vk+1 =yk+1, ..., Vn =yn)

=
X
yk+1

· · ·
X
yn

P(V1 =x1) · · · P(Vk =xk)P(Vk+1 =yk+1) · · · P(Vn =yn)

= P(V1 =x1) · · · P(Vk =xk)

24 X
yk+1

P(Vk+1 =yk+1)

24 X
yk+2

· · ·

"X
yn

P(Vn =yn)

#3535
= P(V1 =x1) · · · P(Vk =xk)

24 X
yk+1

P(Vk+1 =yk+1)

35 · · ·

"X
yn

P(Vn =yn)

#
= P(V1 =x1) · · · P(Vk =xk)

Only have to lookup and multiply k numbers.

Note
It is important to note a general rule which we used to separate summations in the above tasks of Marginalization
and Completion: If a and b are two variables, and f(a) and g(b) are two functions, such that f(a) does not depend
on b and g(b) does not depend on a, then:

∑
a

∑
b

f(a)g(b) =
∑

a

f(a)

(∑
b

g(b)

)
(because f(a) is a constant for summation over b)

=

(∑
b

g(b)

)
·

(∑
a

f(a)

)
(because

∑
b

g(b) is a constant for sumation over a)

=

(∑
a

f(a)

)
·

(∑
b

g(b)

)

If we assume that f(a) ≥ 0 and g(b) ≥ 0, the same rule applies for maxa and maxb:

max
a

max
b

f(a)g(b) =

= max
a

f(a)
(

max
b

g(b)
)

(because f(a) is a constant for maximization over b)

=
(

max
b

g(b)
)
·
(
max

a
f(a)

)
(because max

b
g(b) is a constant for maximization over a)

=
(
max

a
f(a)

)
·
(

max
b

g(b)
)
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3.b Conditioning

P(Vk+1 =yk+1, ..., Vn =yn|V1 =x1, ..., Vk =xk)

=
P(V1 =x1, ..., Vk =xk, Vk+1 =yk+1, ..., Vn =yn)

P(V1 =x1, . . . , Vk =xk)

=
P(V1 =x1) · · ·P(Vk =xk)P(Vk+1 =yk+1) · · ·P(Vn =yn)

P(V1 =x1) · · ·P(Vk =xk)
= P(Vk+1 =yk+1) · · ·P(Vn =yn)

Only have to lookup and multiply n− k numbers.

3.c Completion

y∗k+1, ..., y
∗
n = arg max

yk+1,...,yn

P(Vk+1 =yk+1, ..., Vn =yn|V1 =x1, ..., Vk =xk)

= arg max
yk+1,...,yn

P(Vk+1 =yk+1) · · ·P(Vn =yn)

= arg max
yk+1

P(Vk+1 =yk+1)

[
arg max

yk+2

· · ·
[

arg max
yn

P(Vn =yn)
]]

(Since max and arg max distributes over product just like sum.
That is, maxi axi = amaxi xi (for a, xi ≥ 0)
just like

∑
i axi = a

∑
i xi.)

=

[
arg max

yk+1

P(Vk+1 =yk+1)

]
· · ·
[

arg max
yn

P(Vn =yn)
]

=

[
arg max

yk+1

pk+1,yk+1

]
· · ·
[

arg max
yn

pn,yn

]
Only have to search through m possible completions for each of the n− k variables separately.

Joint Distribution Model vs. Fully Independent Model
The Fully Independent Model addresses the previous issues with the joint distribution model, but it suffers from a
too strong assumption and too little structure, so it usually does not model accurately the real relationships among
variables.
Structured probability models are a compromise solution between previous two models. Structured probability
models are more efficient than the joint distribution model and they address the issue of the sparse training data,
and in the same time they model important dependencies among random variables.
One of the simplest models of this kind is the Naı̈ve Bayes Model.
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