CSCI 4152/6509 — Natural Language Processing

19-Oct-2009

Lecture 16: N-gram Model

Room: FASS 2176 Time: 11:35 – 12:25

Previous Lecture

- Naïve Bayes model (continued):
 - assumption,
 - computational tasks,
 - example,
 - number of parameters,
 - pros and cons;
- N-gram model,
- Language modeling in speech recognition

10 N-gram Models

An important task in probabilistic NLP is *language modelling:* Estimating the probability of arbitrary NL (natural language) sentence: P(sentence)

One application of this problem is in speech recognition. In speech recognition, we are interested in

 $\underset{\mathrm{sentence}}{arg} \max_{P}(\text{sentence}|\text{sound})$

This is equal to:

$$\begin{array}{lll} \arg\max_{\text{sentence}} P(\text{sentence}|\text{sound}) & = & \arg\max_{\text{sentence}} \frac{P(\text{sentence}, \text{sound})}{P(\text{sound})} \\ & = & \arg\max_{\text{sentence}} P(\text{sentence}, \text{sound}) \\ & = & \arg\max_{\text{sentence}} P(\text{sound}|\text{sentence})P(\text{sentence}) \end{array}$$

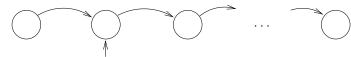
It is easier to estimate P(sound|sentence) than P(sentence, sound), and it is done by an *acoustic model*, while P(sentence) is estimated by a *language model*.

N-gram model is very simple and it is among the most successful models for language modelling; trigram (n = 3) word model in particular. In an n-gram model, we calculate joint distribution for all n-tuples of consecutive words (or characters). For example, in the trigram model, we count the number of occurrences of each triple of consecutive words from a corpus. Using this statistics, we can estimate the probability of arbitrary word w_3 following two given words w_1 and w_2 : $P(w_3|w_1w_2)$. It is useful to assign some small probability to unseen triples as well (using a technique called *smoothing*). If we use two "dummy" words \cdot at the beginning of each sentence, then the probability of arbitrary sentence can be calculated as:

 $P(w_1w_2...w_n) = P(w_1|..)P(w_2|w_1)P(w_3|w_2w_1)...P(w_n|w_{n-1}w_{n-2})$

- Reading: Chapter 4 of [JM]
- Graphical representation
- Use of log probabilities

Graphical Representation



previous (n-1)-gram

Use of log probabilities

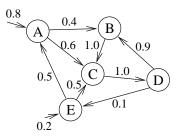
Multiplying a large number of probabilities gives a very small result (close to zero), so in order to avoid floatingpoint underflow, we should use logarithms of the probabilities in the model.

Markov Chain

Ngram model is a Markov chain.

A stochastic process in general is a family of random variables $\{V_i\}$, where *i* is an index from a set *I*. A stochastic process is also denoted as $\{V_i, i \in I\}$, or $\{V_t, t \in T\}$, with intuition coming from time index. The index set *I* can be an arbitrary ordered set, but we will usually assume they it is either finite or countably infinite (i.e., enumerable), and then process can be denoted as $\{V_i\}_{i=1}^{\infty}$. A process is called a *Markov process* if given the value of V_t , for some index *t*, the values of V_s , where s > t, do not depend on values of V_u , where u < t. In case of a finite or countably infinite index set, this means that the value of V_i depends only on the value of the previous variable V_{i-1} . In this case, the Markov process is called a *Markov chain*.

A Markov Chain can be described similarly to a deterministic finite automaton, but instead of reading input, we assume that we start in a random state based on a probability distribution, and change states in sequence based on a probability distribution of the next state given the previous state. For example, a Markov chain could be illustrated in the following way.



This model could generate the sequence $\{A, C, D, B, C\}$ of length 5 with probability:

$$0.8 \cdot 0.6 \cdot 1.0 \cdot 0.9 \cdot 1.0 = 0.432$$

assuming that we are modelling sequences of length 4. If we want to model sequences of arbitrary length, we would also need a stopping probability.

Perplexity

- extrinsic and intrinsic evaluation
 - In extrinsic evaluation, the language model is embedded in a wider application, and the performance of the model is measured through the performance of the application. For example, we can evaluate performance of a language model by measuring improvement in a speech recognition application in which it is embedded. In intrinsic evaluation, we directly evaluate the language model using some measure, such as perplexity.
- Perplexity, W text, L = |W|,

$$PP(W) = \sqrt[L]{\frac{1}{P(W)}} = \sqrt[L]{\prod_{i} \frac{1}{P(w_{i}|w_{i-n+1}\dots w_{i-1})}}$$

- weighted average branching factor
- Text classification using language models