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CSCI 4152/6509 — Natural Language Processing 26-Oct-2009

Lecture 18: Bayesian Belief Networks
Room: FASS 2176
Time: 11:35 – 12:25

Previous Lecture
– Smoothing:

– Add-one (Laplace) smoothing,
– Bell-Witten smoothing;

– Hidden Markov Model,
– graphical representations,
– assumption,
– POS example

11.1 HMM POS Example
When using HMMs for POS tagging, we assume that the hidden internal states of the HMM correspond to correct
POS tags of words, while the words correspond to generated observed variables. According to this, a sentence of
n words would be associated with the following HMM graph:

T1

W1

T2

W2

Tn

Wn

...

...

The variables W1, . . . , Wn are assigned to words in the sentence, while variables T1, . . . , Tn are assigned POS
tags.
All tables of conditional probabilities for P(T2|T1), P(T3|T2), . . . , P(Tn|Tn−1), as well as tables P(W1|T1),
P(W2|T2), . . . , P(Wn|Tn), are equal.
Having this in mind, suppose that we are given the following training data:

swat V flies N like P ants N
time N flies V like P an D arrow N

To accommodate for unseen words, we can assign a special symbol * to unknown words, and assume that it
occurred 0.5 “times” with each tag.
The following probability tables are generated using this smoothing technique:
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T1 P(T1)
N 0.5
V 0.5

, Ti−1 Ti P(Ti|Ti−1)
D N 1
N P 0.5
N V 0.5
P D 0.5
P N 0.5
V N 0.5
V P 0.5

, and Ti Wi P(Wi|Ti)
D an 2/3 ≈ 0.666666667
D * 1/3 ≈ 0.333333333
N ants 2/9 ≈ 0.222222222
N arrow 2/9 ≈ 0.222222222
N flies 2/9 ≈ 0.222222222
N time 2/9 ≈ 0.222222222
N * 1/9 ≈ 0.111111111
P like 0.8
P * 0.2
V flies 0.4
V swat 0.4
V * 0.2

.

The above tables may not seem to be complete in the sense that some combinations of variable assignments are not
included. For example, P(Ti = V |Ti−1 = D) is not included. For the sake of saving space, we have not included
the combinations having probability 0, such as this one.
Let us use the Hidden Markov Model to POS tag the sentence “flies are like flies.”

T1

W1=flies

T2

W2=* (are) W3=like

T3

W4=flies

T4

The problem of POS tagging in this case is the problem of finding the most probable values of the variables Ti

given the values of variables Wi, i.e., it is the completion problem of finding

arg max
T

P(T |W = sentence) = arg max
T

P(T,W = sentence)
P(W = sentence)

= arg max
T

P(T,W = sentence)

= arg max
T

P(T1) · P(W1 = flies|T1) · ·P(T2|T1) · P(W2 = *|T2)

·P(T3|T2) · P(W3 = like|T3) · P(T4|T3) · P(W4 = flies|T4)

where T and W denote arrays of variables Ti and Wi. One way to find the values of T that maximize the given
probability is to test all variations of their values. This number is exponential in general, and in this case it is
44 = 256. A much more efficient solution can be obtained by applying a dynamic programming approach, known
as the Viterbi algorithm. The idea of the Viterbi algorithm is to incrementally calculate maximal values of the
following parts of the above product:

P(T1) · P(W1 = flies|T1)

for all possible values of T1, then

P(T1) · P(W1 = flies|T1) · ·P(T2|T1) · P(W2 = *|T2)

for all possible values of T2 and so on. The computation can be summarized in the following table:
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T1 (W1 = flies) T2 (W2 = *) T3 (W3 = like) T4 (W4 = flies)
P(T1)P(W1|T1) p · P(T2|T1)P(W2|T2) p · P(T2|T1)P(W2|T2) p · P(T2|T1)P(W2|T2)

D 0× 0 = 0 DD: 0× 0× 1
3 = 0 DD: 0× 0× 0 = 0 DD: 0× 0× 0 = 0

ND: 1
9 × 0× 1

3 = 0 ND: 1
90 × 0× = 0 ND: 0× 0× 0 = 0

PD: 0 PD: 1
50 ×

1
2 × 0 = 0 PD: 1

225 × 0.5× 0 = 0
VD: 0 VD: 1

90 × 0× 0 = 0 VD: 0× 0× 0 = 0
max: 0 max: 0 max: 0

N 0.5× 2
9 = 1

9 DN: 0× 1 . . . = 0 DN: 0× 1× 0 = 0 DN: 0× 1× 2
9 = 0

NN: 1
9 × 0 . . . = 0 NN: 1

90 × 0 . . . = 0 NN: 0× 0× 2
9 = 0

PN: 0× . . . = 0 PN: 1
50×0.5×0 = 0 PN: 1

225×0.5× 2
9 = 1

2025
VN: 0.2×0.5× 1

9 = 1
90 VN: 1

90 × 0.5× 0 = 0 VN: 0× 0.5× 2
9 = 0

max: 1
90 max: 0 max: 1

2025

P 0× 0 = 0 DP: 0× . . . = 0 DP: 0× 0× 0.8 = 0 DP: 0× 0× 0 = 0
NP: 1

9×0.5×0.2 = 1
90 NP: 1

90 × 0.5× 0.8 = 1
225 NP: 0× 0.5× 0 = 0

PP: 0× . . . = 0 PP: 1
50 × 0× 0.8 = 0 PP: 1

225 × 0× 0 = 0
VP: 0.2×0.5×0.2 = 1

50 VP: 1
90×0.5×0.8 = 1

225 VP: 0× 0.5× 0 = 0
max: 1

50 max: 1
225 max: 0

V 0.5× 0.4 = 0.2 DV: 0× . . . = 0 DV: 0× 0× 0 = 0 DV: 0× 0× 0.4 = 0
NV: 1

9×0.5×0.2 = 1
90 NV: 1

90 × 0.5× 0 = 0 NV: 0× 0.5× 0.4 = 0
PV: 0× . . . = 0 PV: 1

50 × 0× 0 = 0 PV: 1
225 × 0× 0.4 = 0

VV: 0.2× 0 . . . = 0 VV: 1
90 × 0× 0 = 0 VV: 0× 0× 0.4 = 0

max: 1
90 max: 0 max: 0

The table is filled column by column. We can see now that the largest value that the expression

P(T1) ·P(W1 = flies|T1) · ·P(T2|T1) ·P(W2 = *|T2) ·P(T3|T2) ·P(W3 = like|T3) ·P(T4|T3) ·P(W4 = flies|T4)

can obtain is 1
2025 , and is achieved with T4 = N. If we work backwards through the table, we can obtain the

optimal values for previous variables as well: T3 = P, T2 = V, and T1 = N. We can also choose T2 = N, but in
this case we have T1 = V.
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12 Bayesian networks
Bayesian Networks (also known as belief networks, Bayesian belief networks, or decision networks) provide a
way to create structured probabilistic models. They make a balance between too strong independence assumptions,
as the ones found in Naı̈ve Bayes model or Hidden Markov Model, and the number of parameters of the joint
distribution model.
The following graphs shows dependence structure for the Naı̈ve Bayes model of the spam detection, and for the
Naı̈ve Bayes model in general:

V1

V2 V3 ... Vn

Spam

Free Caps

Examples:
Let us consider the known Burglar-Earthquake example, frequently used in the literature (e.g., the AI textbook by
Russell and Norvig):

Alarm

Burglary Earthquake

JohnCalls MaryCalls

We can follow a topological sort of the above graph and use the chain rule for the conditional probability, which
can be derived from the definition of the conditional probability, to obtain the equation:

P(B,E,A, J, M) = P(B)P(E|B)P(A|B,E)P(J |A,B, E)P(M |J,A,B, E)

The graph denotes some dependence assumptions, which include: B and E are independent variables, hence
P(E|B) = P(E), J depends only on A, hence P(J |A,B, E) = P(J |A), and M depends only on A, hence
P(M |J,A,B, E) = P(M |A). If we make these substitutions in the above equation, we obtain the following,
Bayesian network assumption:

P(B,E,A, J, M) = P(B)P(E)P(A|B,E)P(J |A)P(M |A)

This assumption implies that to evaluate any probability of a complete configuration of the model we need to keep
only the parameters for the following conditional probabilities: P(B), P(E), P(A|B,E), P(J |A), and P(M |A).
These parameters are given in corresponding conditional probability tables (CPTs).
Let us assume that the conditional tables for our example are:
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B P(B)
T 0.001
F 0.999

E P(E)
T 0.002
F 0.998

B E A P(A|B,E)
T T T 0.95
T T F 0.05
T F T 0.94
T F F 0.06
F T T 0.29
F T F 0.71
F F T 0.001
F F F 0.999

A J P(J |A)
T T 0.90
T F 0.10
F T 0.05
F F 0.95

A M P(M |A)
T T 0.70
T F 0.30
F T 0.01
F F 0.99

– Inference by brute force
By using the tables we can easily compute the probability of any complete configuration. With appropriate sum-
mations and by using the definitions of marginal and conditional probability, we can also solve other inference
problems. For example, if we want to calculate P(B = T |J = T ), i.e., the probability that a burglar is in the house
if John told us over the phone that the alarm is on, we first use the definition of the conditional probability:

P(B = T |J = T ) =
P(B = T, J = T )

P(J = T )

The marginal probability P(B = T, J = T ) can be calculated using the formula:

P(B = T, J = T ) =
∑

E,A,M

P(B = T,E,A, J = T,M)

=
∑

E,A,M

P(B = T )P(E)P(A|B = T,E)P(J = T |A)P(M |A)

Hence,

P(B = T, J = T ) =
P(B = T )P(E = T )P(A = T |B = T,E = T )P(J = T |A = T )P(M = T |A = T )

+ P(B = T )P(E = T )P(A = T |B = T,E = T )P(J = T |A = T )P(M = F |A = T )
+ P(B = T )P(E = T )P(A = F |B = T,E = T )P(J = T |A = F )P(M = T |A = F )
+ P(B = T )P(E = T )P(A = F |B = T,E = T )P(J = T |A = F )P(M = F |A = F )
+ P(B = T )P(E = F )P(A = T |B = T,E = F )P(J = T |A = T )P(M = T |A = T )
+ P(B = T )P(E = F )P(A = T |B = T,E = F )P(J = T |A = T )P(M = F |A = T )
+ P(B = T )P(E = F )P(A = F |B = T,E = F )P(J = T |A = F )P(M = T |A = F )
+ P(B = T )P(E = F )P(A = F |B = T,E = F )P(J = T |A = F )P(M = F |A = F )
= 0.001 · 0.002 · 0.95 · 0.9 · 0.7
+ 0.001 · 0.002 · 0.95 · 0.9 · 0.3
+ 0.001 · 0.002 · 0.05 · 0.05 · 0.01
+ 0.001 · 0.002 · 0.05 · 0.05 · 0.99
+ 0.001 · 0.998 · 0.94 · 0.9 · 0.7
+ 0.001 · 0.998 · 0.94 · 0.9 · 0.3
+ 0.001 · 0.998 · 0.06 · 0.05 · 0.01
+ 0.001 · 0.998 · 0.06 · 0.05 · 0.99
= 8.49017 · 10−4
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To calculate P(J = T ), we can represent it as P(J = T ) = P(B = T, J = T ) + P(B = F, J = T ) and first
calculate P(B = F, J = T ):

P(B = F, J = T ) =
∑

E,A,M

P(B = F,E, A, J = T,M)

=
∑

E,A,M

P(B = F )P(E)P(A|B = F,E)P(J = T |A)P(M |A)

= P(B = F )P(E = T )P(A = T |B = F,E = T )P(J = T |A = T )P(M = T |A = T )
+ P(B = F )P(E = T )P(A = T |B = F,E = T )P(J = T |A = T )P(M = F |A = T )
+ P(B = F )P(E = T )P(A = F |B = F,E = T )P(J = T |A = F )P(M = T |A = F )
+ P(B = F )P(E = T )P(A = F |B = F,E = T )P(J = T |A = F )P(M = F |A = F )
+ P(B = F )P(E = F )P(A = T |B = F,E = F )P(J = T |A = T )P(M = T |A = T )
+ P(B = F )P(E = F )P(A = T |B = F,E = F )P(J = T |A = T )P(M = F |A = T )
+ P(B = F )P(E = F )P(A = F |B = F,E = F )P(J = T |A = F )P(M = T |A = F )
+ P(B = F )P(E = F )P(A = F |B = F,E = F )P(J = T |A = F )P(M = F |A = F )
= 0.999 · 0.002 · 0.29 · 0.9 · 0.7
+ 0.999 · 0.002 · 0.29 · 0.9 · 0.3
+ 0.999 · 0.002 · 0.71 · 0.05 · 0.01
+ 0.999 · 0.002 · 0.71 · 0.05 · 0.99
+ 0.999 · 0.998 · 0.001 · 0.9 · 0.7
+ 0.999 · 0.998 · 0.001 · 0.9 · 0.3
+ 0.999 · 0.998 · 0.999 · 0.05 · 0.01
+ 0.999 · 0.998 · 0.999 · 0.05 · 0.99
= 5.12899587 · 10−2

Now, we calculate

P(J = T ) = P(B = T, J = T ) + P(B = F, J = T ) = 8.49017 · 10−4 + 5.12899587 · 10−2 = 0.0521389757,

and finally

P(B = T |J = T ) =
P(B = T, J = T )

P(J = T )
=

8.49017 · 10−4

0.0521389757
= 0.0162837299467699.

Even this small example illustrates inefficiency of this approach.

After this informal description of Bayesian Network, here is a more formal definition:

Definition 12.1 (Bayesian Network) A Bayesian Network is defined by a directed acyclic graph (DAG) and a
collection of conditional probability tables, where nodes in the graph represent random variables and directed
edges in the graph represent conditional independence assumptions. The edges are interpreted in the following
way: If Vj (1 ≤ j ≤ n) is a random variable, and Vπ(j) are parent variables of Vj , i.e., all source nodes for
edges whose destination node is Vjm then the probability of Vj given variables Vπ(j) is independent of any other
variable; i.e.,

P(Vj = xj | all other variables } = P(Vj = xj |Vπ(j) = xπ(j))

Hence, a Bayesian network consists of two components: a directed graph and a set of lookup tables for conditional
probabilities for each variable Vi. If π(i) are parent nodes of Vi, then for all possible values of variables Vπ(i) and
Vi, the conditional probability table (CPT) specifies the probability of P(Vi|Vπ(i)). If the number of parent nodes is
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k, and if we assume that each variable may have m different values, than the conditional probability table has mk+1

rows. For each of mk combinations of values of parent notes, there is one constraint on the probability distribution∑
x P(Vi = x|Vπ(i)) = 1, which will result in mk constraints; i.e., there are mk+1 − mk = (m − 1)mk free

parameters. If the maximal number of parents for a whole network is k, then the total number of free parameters
is not grater than n(m− 1)mk.

Example. For example, let us calculate the number of free parameters of the following Bayesian Network:

V

V V

V3

1 2

4

The Bayesian assumption for the network above is:

P(V1 =x1, V2 =x2, V3 =x3, V4 =x4)
= P(V1 =x1) P(V2 =x2) P(V3 =x3|V1 =x1) P(V4 =x4|V1 =x1, V2 =x2)

How many parameters are needed to represent the network?
For each variable store a conditional probability table of size

m ·m#parents −m#parents (constraints)

For the above network, the number of free parameters is:

m + m + m2 + m3 parameters
−1− 1−m−m2 constraints
= m3 + m− 2

Representational power
Using the Bayesian network model we can represent many other models: the full joint distribution model, fully
independent model, Naı̈ve Bayes model, Hidden Markov Model, and other structured models.
Some examples of the Bayesian Networks are:

V

V

V

V

V V V V

V

V V

V

1

2

3

4

1 2 3 4

3

1 2

4

(1) (2) (3)

Number of parameters in each model:
(1) (m− 1) + (m2 −m) + (m3 −m2) + (m4 −m3) = m4 − 1
(2) (m− 1) + (m− 1) + (m− 1) + (m− 1) = 4m− 4
(3) solved above: m3 + m− 2
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Example (Burglar-Earthquake cont’d)
The tables for the Burglar-Earthquake example:

B P(B)
T 0.001
F 0.999

E P(E)
T 0.002
F 0.998

B E A P(A|B,E)
T T T 0.95
T T F 0.05
T F T 0.94
T F F 0.06
F T T 0.29
F T F 0.71
F F T 0.001
F F F 0.999

A J P(J |A)
T T 0.90
T F 0.10
F T 0.05
F F 0.95

A M P(M |A)
T T 0.70
T F 0.30
F T 0.01
F F 0.99

12.1 Computational Tasks
Evaluation
The calculate probability of a complete configuration, we multiply corresponding conditional probabilities:

P(V1 =x1, ..., Vn =xn) =
n∏

j=1

P(Vj =xj |Vπ(j) =xπ(j))

Simulation
For i = 1, ..., n, draw xj according to P(Vj = xj |Vπ(j) = xπ(j)). Conjoin (x1, ..., xn) to form a complete
configuration.

Learning
Learning with predetermined network graph, and from complete observations can be done by direct MLE; i.e.,
counting.
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