# CSCI 4152/6509 — Natural Language Processing

2-Nov-2009

## Lecture 21: Probabilistic Context-Free-Grammars

Room: FASS 2176 Time: 11:35 – 12:25

#### **Previous Lecture**

- Message passing algorithm (cont'd):
- marginalization with one variable,
- marginalization in general,
- conditioning with one variable,
- arbitrary conditional probability,
- most probable completion;
- the burglar-earthquake example

### 12.5 HMM as Bayesian Network

#### HMM Example (revisited)



Training data:

swat V flies N like P ants N time N flies V like P an D arrow N

#### **Generated Tables**

| $T_1$ | $P(T_1)$ , | $T_{i-1}$ | $T_i$ | $P(T_i T_{i-1})$ | , and | $T_i$ | $W_i$ | $P(W_i T_i)$ .                                     |
|-------|------------|-----------|-------|------------------|-------|-------|-------|----------------------------------------------------|
| Ν     | 0.5        | D         | Ν     | 1                |       | D     | an    | $2/3 \approx 0.666666667$                          |
| V     | 0.5        | Ν         | Р     | 0.5              |       | D     | *     | $1/3 \approx 0.3333333333333333333333333333333333$ |
|       |            | Ν         | V     | 0.5              |       | Ν     | ants  | $2/9 \approx 0.222222222$                          |
|       |            | Ρ         | D     | 0.5              |       | Ν     | arrow | $2/9 \approx 0.222222222$                          |
|       |            | P         | Ν     | 0.5              |       | Ν     | flies | $2/9 \approx 0.222222222$                          |
|       |            | V         | Ν     | 0.5              |       | Ν     | time  | $2/9 \approx 0.222222222$                          |
|       |            | V         | Ρ     | 0.5              |       | Ν     | *     | $1/9 \approx 0.111111111$                          |
|       |            |           |       |                  |       | Ρ     | like  | 0.8                                                |
|       |            |           |       |                  |       | Ρ     | *     | 0.2                                                |
|       |            |           |       |                  |       | V     | flies | 0.4                                                |
|       |            |           |       |                  |       | V     | swat  | 0.4                                                |
|       |            |           |       |                  |       | V     | *     | 0.2                                                |

### **Tagging Example**

Let us again use the example sentence: "flies are like flies"



The corresponding factor graph is:



The messages are calculated as follows:

| The messages are calculated as follows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| $\begin{array}{c c} V_1 & m_1 \\ \hline D & 0 \\ \hline \end{array} & \begin{array}{c} W_1 & m_2 \\ \hline \text{flies} & 1 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| $D \mid 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| $N = \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}$ , and $\begin{bmatrix} an \\ * \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| $P \mid 0 \qquad * \mid 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| V 0.5 $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Calculation of $m_3$ is done as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| $m_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| $\overline{V_1 = D}$ $W_1 =$ flies: $1 \cdot 0 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| $W_1 = \vdots = 0 \qquad \frac{V_1 + m_3}{D + 0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| max:0 and we obtain $N = \frac{2}{9}$ . The other messages are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| $ \begin{vmatrix} V_1 = N & W_1 = \text{ flies } : 1 \cdot \frac{2}{9} &= \frac{2}{9} \\ W_1 = \text{ an } : 0 \cdot \frac{2}{3} &= 0 \end{vmatrix} \qquad \qquad P = 0 \\ V = 0.4 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| $W \mid m (m m) = W \mid m = m_5 m_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $f_3$          |
| $V_1 \mid m_4 (= m_1 \cdot m_3) = V_2 \mid m_5 \mid m_$ | = 0            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 0            |
| $N \mid 0.5 \cdot 2/9 = 1/9$ $N \mid 0.1  m_5$ is calculated as follows: $V_1 = N \cdot \frac{1}{9} \cdot C$<br>$V_1 = P : 0 \cdot 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 = 0          |
| $V_1 - V \cdot 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 = 0          |
| $V = 0.5 \cdot 0.4 = 0.2 \qquad V = 1/18 \qquad \qquad V_1 = V \cdot 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 = 0<br>max·0 |

max:0

| $\boxed{\begin{array}{c} m_5 \\ \hline V_2 = N \end{array}}$ | $m_4 \cdot f_3$ $V_1 = D : 0 \cdot 1$ $V_1 = N : \frac{1}{9} \cdot 0$ $V_1 = P : 0 \cdot 0.5$ $V_1 = V : 0.2 \cdot 0.5$                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                   |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\boxed{\begin{array}{c} m_5 \\ \hline V_2 = V \end{array}}$ | $m_4 \cdot f_3 V_1 = D : 0 \cdot 0 V_1 = N : \frac{1}{9} \cdot 0.5 V_1 = P : 0 \cdot 0 V_1 = V : 0.2 \cdot 0$                                                                                                          | $= \frac{1}{18} = 0 = 0$ $= 0$ $= \frac{1}{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                         |
|                                                              | e calculating: $\frac{W_2}{\text{flies}}$<br>$an \\ *$<br>$\vdots$                                                                                                                                                     | $ \begin{array}{c c} \hline m_6 \\ \hline 0 \\ 0 \\ 1 \\ P \\ 0 \\ \hline V \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                 |
| $m_0$                                                        | $m_8 \cdot f_3$ $V_2 = D : 0 \cdot 0$ $V_2 = N : \frac{1}{90} \cdot 0$ $V_2 = P : \frac{1}{50} \cdot 0.5$ $V_2 = V : \frac{1}{90} \cdot 0$                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mediate calculations:<br>$ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                           |
| $\boxed{\begin{array}{c} m_9 \\ \hline V - P \end{array}}$   | $m_8 \cdot f_3$                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $m_9 \qquad m_8 \cdot f_3$                                                                                                                                                                                                              |
| $v_3 = P$                                                    | $V_{2} = D : 0 \cdot 0$ $V_{2} = N : \frac{1}{90} \cdot 0.5$ $V_{2} = P : \frac{1}{50} \cdot 0$ $V_{2} = V : \frac{1}{90} \cdot 0.5$                                                                                   | = 0 = 1/180 = 0 = 1/180 max:1/180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{bmatrix} \overline{W_3 = V} & V_2 = D : 0 \cdot 0 & = 0 \\ V_2 = N : \frac{1}{90} \cdot 0.5 & = 1/180 \\ V_2 = P : \frac{1}{50} \cdot 0 & = 0 \\ V_2 = V : \frac{1}{90} \cdot 0 & \underline{= 0} \\ max:1/180 \end{bmatrix} $ |
| and we obta                                                  | $V_{2} = D : 0 \cdot 0$ $V_{2} = N : \frac{1}{90} \cdot 0.5$ $V_{2} = P : \frac{1}{50} \cdot 0$ $V_{2} = V : \frac{1}{90} \cdot 0.5$ $\boxed{V_{3}  m_{9}}$ $\boxed{D  0.01}$ ain: $N  0.01  .7$ $P  1/180$ $V  1/180$ | $\max:1/180$ $\frac{W_3}{\text{Ihen, }}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                 |
| and we obta<br>To calculate<br>$m_{12}$                      | $V_{2} = D : 0 \cdot 0$ $V_{2} = N : \frac{1}{90} \cdot 0.5$ $V_{2} = P : \frac{1}{50} \cdot 0$ $V_{2} = V : \frac{1}{90} \cdot 0.5$ $\boxed{V_{3}  m_{9}}$ $\boxed{D  0.01}$ ain: $N  0.01  .7$ $P  1/180$ $V  1/180$ | $\max:1/180$ Then, $\frac{W_3}{\text{like}}$ $\vdots$ Following interest in the second | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                 |

 $V_4 \mid m_{13}$  $V_4 \mid$  $W_4 \mid m_{14}$  $\overline{D}$ 1/450 $\overline{D}$ 0 1/450 . Then, flies 1 N, and N2/9 . and we obtain: P0 P0 0 VV0 0.4To maximize the product of probabilities of  $V_4$  we calculate:  $V_4$  $m_{13} \cdot m_{15}$ D= 0 $\frac{\frac{1}{450}}{\frac{1}{450}} \cdot \frac{2}{9}$ = 1/2025 and we obtain  $|V_4^* = N|$ , which we use in further messages, as a "hard-wired" NP $0 \cdot 0$ = 0V $0 \cdot 0.4$ = 0 $V_4$  $m_{16}$  $m_{16} \cdot f_3$  $\frac{2}{9} \cdot 1 = 2/9$  $\frac{2}{9} \cdot 0 = 0$ , and we obtain:  $\frac{2}{9} \cdot 0.5 = 1/9$  $\frac{2}{9} \cdot 0.5 = 1/9$ D0 2/9~ , and for  $m_{17}$  use only  $V_4=N$  in  $m_{16}\cdot f_3$ : value. We calculate NP0 V0  $\cdot 0.5 = 1/9$  $V_3 \mid m_{17}$ D2/9N0. P1/9V1/9To find optimal  $V_3$  we calculate:  $V_3 \quad m_9 \cdot m_{11} \cdot m_{17}$  $0.01 \cdot 0 \cdot \frac{2}{9}$ D= 0N $0.01 \cdot 0 \cdot \check{0}$ = 0and we obtain  $V_3^* = P$ .  $\frac{\frac{1}{180} \cdot 0.8 \cdot \frac{1}{9}}{\frac{1}{180} \cdot 0 \cdot \frac{1}{9}}$ = 1/2025PV= 0 $V_3 \mid m_{18} = m_{17} \cdot m_{11}$  $V_2 \mid m_{19} = m_{18} \cdot f_3 \text{ for } V_3 = P$  $\frac{\frac{4}{45} \cdot 0}{\frac{4}{45} \cdot \frac{1}{2}} = 2/45$   $\frac{\frac{4}{45} \cdot \frac{1}{2}}{45} \cdot 0 = 0$ 0 DDThen, N0 NPP $\frac{1}{9} \cdot 0.8 = 4/45$ VV= 2/450 To find optimal  $V_2$  we calculate:  $V_2$  $m_{19} \cdot m_5 \cdot m_7$  $\begin{array}{c} 0 \cdot 0 \cdot \frac{1}{3} \\ \frac{2}{45} \cdot 0.1 \cdot \frac{1}{9} \\ 0 \cdot 0.1 \cdot 0.2 \end{array}$ D= 0N= 1/2025 and we can choose either N or V. Let us choose  $V_2^* = V$ P= 0V $\frac{2}{45} \cdot \frac{1}{18} \cdot 0.2$ = 1/2025 $V_2$  $V_1$  $m_{20} = m_7 \cdot m_{19}$  $m_{21} = m_{20} \cdot f_3$  for  $V_2 = V$  $\frac{\frac{2}{225} \cdot 0}{\frac{2}{225} \cdot \frac{1}{2}} = \frac{1}{225} \cdot \frac{1}{2} = \frac{1}{225} \cdot \frac{1}{2} = \frac{1}{225} \cdot 0 = 0$ DD0 NN0 PP0 $0.2 \cdot \frac{2}{45} = 2/225$  $\frac{2}{225} \cdot 0 = 0$ VVTo find optimal  $V_1$  we calculate:  $V_1$  $m_1 \cdot m_3 \cdot m_{21}$ D $0 \cdot 0 \cdot 0$ = 0 $0.5\cdot \tfrac{2}{9}\cdot \tfrac{1}{225}$ N= 1/2025 and we obtain  $V_1^* = N$ .  $0.5 \cdot 0 \cdot \overline{0}$ P= 0V $0 \cdot 0.4 \cdot 0$ = 0

## **13** Probabilistic Context-Free Grammar (PCFG)

#### Reading: Chapters 13 and 14

**Probabilistic Context-Free Grammar (PCFG)** is also known as **Stochastic Context-Free Grammar (SCFG)**. Both, n-gram model and HMM are linear models, which may not be most suitable to model the structured nature of natural language syntax. While Bayesian Networks could be one way of capturing structured nature of language in a probabilistic way, PCFGs represent another way, which is directly derived from the Context-Free Grammar formalism.

For example, in language modelling applied to the sentence:

The velocity of the seismic waves rises to...

a linear model will likely assign a higher probability to the word "rise" after the plural "waves" than to the word "rises," which actually correctly appears in the sentence and agrees with the head "velocity" of the noun phrase. As previously described, context-free grammars represent a structural model for describing syntax. For example, the syntax of the sentence "Time flies like an arrow." could be represented as the following context-free parse tree:



There are known efficient parsing algorithms for context-free grammars in the theory of of formal languages, and applications such as design of compilers and interpreters for programming languages. Two examples of such parsing approaches are recursive descent parsing and shift-reduce LR parsing. A large obstacle in applying these parsers to the problem of NL parsing is in the requirement that the language is unambiguous. Natural languages are inherently ambiguous and a parser for natural language must handle ambiguous grammars and ambiguous input. For example, if we assume a different meaning of the above sentence, we obtain a different parse tree, like the following one:



The above two trees induce the following CFG:

| S  | $\rightarrow$ | NP VP | VP | $\rightarrow$ | V NP | N - | $\rightarrow$ | time  | V | $\rightarrow$ | like  |
|----|---------------|-------|----|---------------|------|-----|---------------|-------|---|---------------|-------|
| NP | $\rightarrow$ | Ν     | VP | $\rightarrow$ | V PP | N - | $\rightarrow$ | arrow | V | $\rightarrow$ | flies |
| NP | $\rightarrow$ | N N   | PP | $\rightarrow$ | P NP | N - | $\rightarrow$ | flies | Р | $\rightarrow$ | like  |
| NP | $\rightarrow$ | D N   |    |               |      | D - | $\rightarrow$ | an    |   |               |       |

To have a complete CFG specification, we need to add that the set of terminals is {'time', 'arrow', 'flies', 'an', 'like'}, the set of non-terminals is { S, NP, VP, D, N, PP, P, V}, and the start symbol is S.

If we parse the same sentence using this grammar, then we will obtain at least two different parse trees. To make parsing more usable, we need a way of assigning a score or probability to each tree, so we can always choose the "best" parse tree in a certain sense.

#### **13.1** PCFG as a Probabilistic Model

To transform a CFG into a probabilistic model we model derivations as stochastic process in a generative way. For example, the left-most derivation corresponding to the first parse tree described above is:

- $S \Rightarrow NP VP \Rightarrow N VP \Rightarrow time VP \Rightarrow time V PP \Rightarrow time flies PP \Rightarrow time flies P NP$ 
  - $\Rightarrow$  time flies like NP  $\Rightarrow$  time flies like D N  $\Rightarrow$  time flies like an N  $\Rightarrow$  time flies like an arrow

At each step of the derivation, given a non-terminal that needs to be re-written, we usually have several options, corresponding to several rules that have this non-terminal on the left-hand side.

Hence, we calculate the probability of the tree by multiplying probabilities of all rules occurring in the tree:

$$\begin{split} P(\text{first tree}) &= P(N \to \text{time}) P(V \to \text{flies}) P(P \to \text{like}) P(D \to \text{an}) \\ P(N \to \text{arrow}) P(NP \to N) P(NP \to D N) \dots P(S \to NP VP) \end{split}$$

If we assign the following probabilities to the rules:

| S  | $\rightarrow$ | NP VP | /1  | VP | $\rightarrow$ | V NP | /.5 | Ν | $\rightarrow$ | time  | /.5 |
|----|---------------|-------|-----|----|---------------|------|-----|---|---------------|-------|-----|
| NP | $\rightarrow$ | Ν     | /.4 | VP | $\rightarrow$ | V PP | /.5 | Ν | $\rightarrow$ | arrow | /.3 |
| NP | $\rightarrow$ | N N   | /.2 | PP | $\rightarrow$ | P NP | /1  | Ν | $\rightarrow$ | flies | /.2 |
| NP | $\rightarrow$ | D N   | /.4 |    |               |      |     | D | $\rightarrow$ | an    | /1  |
| V  | $\rightarrow$ | like  | /.3 |    |               |      |     |   |               |       |     |
| V  | $\rightarrow$ | flies | /.7 |    |               |      |     |   |               |       |     |
| Р  | $\rightarrow$ | like  | /1  |    |               |      |     |   |               |       |     |

then the probability of the first tree is 0.0084, and the probability of the second tree is 0.00036. We can conclude that the first tree is more likely, which should correspond to our intuition.

The probability assigned to a rule  $N \to \alpha$  is the probability  $P(N \to \alpha | N)$ , so if  $N \to \alpha_1, N \to \alpha_2, \dots, N \to \alpha_n$ are all rules with the nonterminal N on its left hand side, then

$$\sum_{i=1}^{n} \mathbf{P}(N \to \alpha_i) = 1$$

These probabilities are easily learned from a set of parse trees, usually called parse treebank, by counting the number of occurrences of distinct rules.

This model is a language model, since the sum of probabilities of all sentences in the language is 1. Actually, in order to be a language model, we also require that the grammar is proper, i.e., that all infinite trees have probability 0, which is not always the case. We will not go into further details regarding this question here, except noting that it has been proved that any PCFG with probabilities induced from a treebank is proper.