CSCI 4152/6509 - Natural Language Processing

Lecture 21: Probabilistic Context-Free-Grammars

Room: FASS 2176
Time: 11:35-12:25

Previous Lecture

- Message passing algorithm (cont'd):
- marginalization with one variable,
- marginalization in general,
- conditioning with one variable,
- arbitrary conditional probability,
- most probable completion;
- the burglar-earthquake example

12.5 HMM as Bayesian Network

HMM Example (revisited)

Training data:

```
swat V flies N like P ants N
time N flies V like P an D arrow N
```

Generated Tables

| T_{1} | $\mathrm{P}\left(T_{1}\right)$, |
| :---: | :---: |, | T_{i-1} | T_{i} | $\mathrm{P}\left(T_{i} \mid T_{i-1}\right)$ |
| :---: | :---: | :---: |
| N | 0.5 | |
| V | 0.5 | |

Tagging Example

Let us again use the example sentence: "flies are like flies"

The corresponding factor graph is:

The messages are calculated as follows:

V_{1}	m_{1}		W_{1}	m_{2}
D	0		flies	1
N	0.5, and	an	0	
P	0		$*$	0
V	0.5		\vdots	0

Calculation of $\overline{m_{3} \text { is done as follows: }}$

To calculate m_{9}, we have the following intermediate calculations:

To calculate $m_{13} \overline{\text {, we have the following intermediate calculations: }}$

To maximize the product of probabilities of V_{4} we calculate:

V_{4}	$m_{13} \cdot m^{2}$		
D	$\frac{1}{450} \cdot$		
N	$\frac{1}{450} \cdot$		
P	$0 \cdot 0$		
V	$0 \cdot 0$.		value. We cal
:---			
V_{3}	$m_{17} m_{1}$.		

To find optimal V_{3} we calculate:

To find optimal V_{2} we calculate:

V_{2}	$m_{19} \cdot m_{5} \cdot m_{7}$	
D	$0 \cdot 0 \cdot \frac{1}{3}$	$=0$
N	$\frac{2}{45} \cdot 0.1 \cdot \frac{1}{9}=1 / 2025$	
P	$0 \cdot 0.1 \cdot 0.2$	$=0$
V	$\frac{2}{45} \cdot \frac{1}{18} \cdot 0.2$	$=1 / 2025$
V_{2}	$m_{20}=m_{7} \cdot m_{19}$	
D	0	V_{1}

To find optimal V_{1} we calculate:

V_{1}	$m_{1} \cdot m_{3} \cdot m_{21}$	
D	$0 \cdot 0 \cdot 0$	$=0$
N	$0.5 \cdot \frac{2}{9} \cdot \frac{1}{225}$	$=1 / 2025$
P	$0.5 \cdot 0 \cdot 0$	$=0$
V	$0 \cdot 0.4 \cdot 0$	$=0$

13 Probabilistic Context-Free Grammar (PCFG)

Reading: Chapters 13 and 14
Probabilistic Context-Free Grammar (PCFG) is also known as Stochastic Context-Free Grammar (SCFG).
Both, n-gram model and HMM are linear models, which may not be most suitable to model the structured nature of natural language syntax. While Bayesian Networks could be one way of capturing structured nature of language in a probabilistic way, PCFGs represent another way, which is directly derived from the Context-Free Grammar formalism.
For example, in language modelling applied to the sentence:
The velocity of the seismic waves rises to...
a linear model will likely assign a higher probability to the word "rise" after the plural "waves" than to the word "rises," which actually correctly appears in the sentence and agrees with the head "velocity" of the noun phrase. As previously described, context-free grammars represent a structural model for describing syntax. For example, the syntax of the sentence "Time flies like an arrow." could be represented as the following context-free parse tree:

Time flies like an arrow.

There are known efficient parsing algorithms for context-free grammars in the theory of of formal languages, and applications such as design of compilers and interpreters for programming languages. Two examples of such parsing approaches are recursive descent parsing and shift-reduce LR parsing. A large obstacle in applying these parsers to the problem of NL parsing is in the requirement that the language is unambiguous. Natural languages are inherently ambiguous and a parser for natural language must handle ambiguous grammars and ambiguous input. For example, if we assume a different meaning of the above sentence, we obtain a different parse tree, like the following one:

The above two trees induce the following CFG:

S	$\rightarrow \mathrm{NP}$ VP	VP	$\rightarrow \mathrm{V} \mathrm{NP}$	N	\rightarrow	time	V	\rightarrow
like								
NP	$\rightarrow \mathrm{N}$	VP	\rightarrow	V PP	N	\rightarrow	arrow	V
NP	$\rightarrow \mathrm{N} \mathrm{N}$	PP	\rightarrow	flies				
NP	$\rightarrow \mathrm{D} \mathrm{N}$	N	\rightarrow	flies	P	\rightarrow	like	
				D	\rightarrow	an		

To have a complete CFG specification, we need to add that the set of terminals is $\{$ 'time', 'arrow', 'flies', 'an', 'like'\}, the set of non-terminals is $\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{D}, \mathrm{N}, \mathrm{PP}, \mathrm{P}, \mathrm{V}\}$, and the start symbol is S .
If we parse the same sentence using this grammar, then we will obtain at least two different parse trees. To make parsing more usable, we need a way of assigning a score or probability to each tree, so we can always choose the "best" parse tree in a certain sense.

13.1 PCFG as a Probabilistic Model

To transform a CFG into a probabilistic model we model derivations as stochastic process in a generative way. For example, the left-most derivation corresponding to the first parse tree described above is:

$$
\begin{aligned}
\mathrm{S} & \Rightarrow \mathrm{NP} \mathrm{VP} \Rightarrow \mathrm{NVP} \Rightarrow \text { time } \mathrm{VP} \Rightarrow \text { time } \mathrm{V} \mathrm{PP} \Rightarrow \text { time flies } \mathrm{PP} \Rightarrow \text { time flies } \mathrm{P} \text { NP } \\
& \Rightarrow \text { time flies like } \mathrm{NP} \Rightarrow \text { time flies like } \mathrm{D} \mathrm{~N} \Rightarrow \text { time flies like an } \mathrm{N} \Rightarrow \text { time flies like an arrow }
\end{aligned}
$$

At each step of the derivation, given a non-terminal that needs to be re-written, we usually have several options, corresponding to several rules that have this non-terminal on the left-hand side.
Hence, we calculate the probability of the tree by multiplying probabilities of all rules occurring in the tree:

$$
\begin{aligned}
\mathrm{P}(\text { first tree })= & \mathrm{P}(\mathrm{~N} \rightarrow \text { time }) \mathrm{P}(\mathrm{~V} \rightarrow \text { flies }) \mathrm{P}(\mathrm{P} \rightarrow \text { like }) \mathrm{P}(\mathrm{D} \rightarrow \text { an }) \\
& \mathrm{P}(\mathrm{~N} \rightarrow \text { arrow }) \mathrm{P}(\mathrm{NP} \rightarrow \mathrm{~N}) \mathrm{P}(\mathrm{NP} \rightarrow \mathrm{D} \mathrm{~N}) \ldots \mathrm{P}(\mathrm{~S} \rightarrow \mathrm{NP} \text { VP })
\end{aligned}
$$

If we assign the following probabilities to the rules:

S	\rightarrow	NP VP	$/ 1$	VP	\rightarrow	V NP	$/ .5$	N	\rightarrow	time
NP	$\rightarrow \mathrm{N}$	$/ .4$	VP	\rightarrow	V PP	$/ .5$	N	\rightarrow	arrow	$/ .3$
NP	$\rightarrow \mathrm{N} \mathrm{N}$	$/ .2$	PP	\rightarrow	P NP	$/ 1$	N	\rightarrow	flies	$/ .2$
NP	\rightarrow	D N	$/ .4$					D	\rightarrow	an
V	\rightarrow	like	$/ .3$							
V	\rightarrow	flies	$/ .7$							
P	\rightarrow	like	$/ 1$							

then the probability of the first tree is 0.0084 , and the probability of the second tree is 0.00036 . We can conclude that the first tree is more likely, which should correspond to our intuition.
The probability assigned to a rule $N \rightarrow \alpha$ is the probability $\mathrm{P}(N \rightarrow \alpha \mid N)$, so if $N \rightarrow \alpha_{1}, N \rightarrow \alpha_{2}, \ldots, N \rightarrow \alpha_{n}$ are all rules with the nonterminal N on its left hand side, then

$$
\sum_{i=1}^{n} \mathrm{P}\left(N \rightarrow \alpha_{i}\right)=1
$$

These probabilities are easily learned from a set of parse trees, usually called parse treebank, by counting the number of occurrences of distinct rules.
This model is a language model, since the sum of probabilities of all sentences in the language is 1 . Actually, in order to be a language model, we also require that the grammar is proper, i.e., that all infinite trees have probability 0 , which is not always the case. We will not go into further details regarding this question here, except noting that it has been proved that any PCFG with probabilities induced from a treebank is proper.

