
Lecture 22 p.1

CSCI 4152/6509 — Natural Language Processing 4-Nov-2009

Lecture 22: Probabilistic Parsing
Room: FASS 2176
Time: 11:35 – 12:25

Previous Lecture
– The most probable completion in Bayesian Networks;
– HMM as a BayesianNetwork,
– HMM completion example;
– Probabilistic Context Free Grammars:

– motivation,
– PCFG as a probabilistic model

13.2 PCFG as a Probabilistic Model
To transform a CFG into a probabilistic model we model derivations as stochastic process in a generative way. For
example, the left-most derivation corresponding to the first parse tree described above is:

S ⇒ NP VP⇒ N VP ⇒ time VP⇒ time V PP⇒ time flies PP⇒ time flies P NP
⇒ time flies like NP⇒ time flies like D N⇒ time flies like an N⇒ time flies like an arrow

At each step of the derivation, given a non-terminal that needs to be re-written, we usually have several options,
corresponding to several rules that have this non-terminal on the left-hand side.
Hence, we calculate the probability of the tree by multiplying probabilities of all rules occurring in the tree:

P(first tree) = P(N→ time)P(V→ flies)P(P→ like)P(D→ an)
P(N→ arrow)P(NP→ N)P(NP→ D N) . . .P(S→ NP VP)

If we assign the following probabilities to the rules:

S → NP VP /1 VP → V NP /.5 N → time /.5
NP → N /.4 VP → V PP /.5 N → arrow /.3
NP → N N /.2 PP → P NP /1 N → flies /.2
NP → D N /.4 D → an /1

V → like /.3
V → flies /.7
P → like /1

then the probability of the first tree is 0.0084, and the probability of the second tree is 0.00036. We can conclude
that the first tree is more likely, which should correspond to our intuition.
The probability assigned to a rule N → α is the probability P(N → α|N), so if N → α1, N → α2, . . . , N → αn

are all rules with the nonterminal N on its left hand side, then

n∑
i=1

P(N → αi) = 1

These probabilities are easily learned from a set of parse trees, usually called parse treebank, by counting the
number of occurrences of distinct rules.

Vlado Kešelj, November 4, 2009, CSCI 4152/6509 http://www.cs.dal.ca/˜vlado/csci6509/

Lecture 22 p.2 CSCI 6509

This model is a language model, since the sum of probabilities of all sentences in the language is 1. Actually, in
order to be a language model, we also require that the grammar is proper, i.e., that all infinite trees have probabil-
ity 0, which is not always the case. We will not go into further details regarding this question here, except noting
that it has been proved that any PCFG with probabilities induced from a treebank is proper.

Computational Tasks for PCFG Model
Evaluation
Given a tree t, what is P(t)? As seen in the example, we simply multiply probabilities associated with each node
of the tree.

CSCI 6509 Lecture 22 p.3

Generation
We can generate (sample) sentences by starting with the initial nonterminal S, and by rewriting it using a rule
S → α according to the probabilities assigned to the rules that have S on their left hand side. We obtain a
sentential form—a string of terminals and nonterminals. Take the first nonterminal in this form, and rewrite it in
the same way; and so on. The loop stops when there are no nonterminals, i.e., when we obtain a sample sentence.
An interesting question is whether this process stops. If the grammar is proper, it stops with probability 1. If the
grammar is not proper, we might easily be trapped in an infinite derivation.

Learning
An direct approach to learning from a completely given parse treebank is counting the number of rule occurrences.

Inference
Marginalization: P(sentence) =?

Conditioning: P(tree|sentence) =?

Completion: arg maxtree P(tree|sentence)

13.3 Efficient Inference in PCFG Model
Let us consider the marginalization task:
P(sentence) =?

Lecture 22 p.4 CSCI 6509

If ‘sentence’ is the following sequence of words: w1w2 . . . wn, then P(sentence) is the following conditional
probability:

P(sentence) = P(w1w2 . . . wn|S)

i.e., it is the probability of generating the sentence given that we start from S, i.e, it is P(S ⇒∗ w1 . . . wn).
An obvious way to calculate this marginal probability is to find all parse trees of a sentence and sum their proba-
bilities, i.e:

P(sentence) =
∑
t∈T

P(t),

where T is the set of all parse trees of the sentence ‘sentence’. However, this may be very inefficient. We also need
a way to find all parse trees.
As an example illustrating that the above direct approach may lead to an exponential algorithm, consider a CFG
with only two rules S ⇒ S S and S ⇒ a. The sentences an have as many parse trees as there are binary trees
with n leaves, which is a well-known Catalan number, ≈ 4n

n3/2
√

π
as n→∞.

An algorithm for efficient marginalization can be derived from the well-known efficient parsing algorithm known as
CYK (Cocke-Younger-Kasami) algorithm. The algorithm has a running-time complexity of O(n3) for a sentence
of length n.
CYK can be applied only to a CNF (Chomsky Normal Form) grammar, so if the grammar is not already in CNF,
we would have to convert it to CNF. A Context-Free Grammar is in CNF if all its rules are either of the form
A → B C, where A, B, and C are nonterminals, or A → w, where A is a nonterminal and w is a terminal. If a
CFG is not in CNF, it can be converted into CNF.
Is the following grammar in CNF?

S → NP VP VP → V NP N → time V → like
NP → N VP → V PP N → arrow V → flies
NP → N N PP → P NP N → flies P → like
NP → D N D → an

How about this grammar?

S → NP VP VP → V NP N → time V → like
NP → time VP → V PP N → arrow V → flies
NP → N N PP → P NP N → flies P → like
NP → D N D → an

Note: What if the grammar is not in CNF
There is a standard algorithm for converting arbitrary CFG into CNF. The problem is: How to calculate probabili-
ties of the rules in the new grammar? One way is to sample from the old grammar, and to estimate probabilities in
the new grammar by parsing the sample sentences and counting. The probabilities can also be calculated directly,
but it not a straightforward task.
Here are the steps needed for conversion of an arbitrary CFG into CNF. This is just a partial sketch of the algorithm:
calculating probabilities of the new rules in the first two steps is not trivial and it is not given.

Eliminate empty rules N → ε

Find all “nullable” nonterminals, i.e., terminals N such that N ⇒∗ ε.
From each rule A → X1 . . . Xn create new rules by striking out some nullable nonterminals. This is done for all
combination of nonterminals in the rule, except for striking out all X1 . . . Xn if they are all nullable.
Remove empty rules.
If the start symbol is nullable, add S → ε, and treat that as a special case.

CSCI 6509 Lecture 22 p.5

Eliminate unit rules N →M

For any two variables A and B, such that A ⇒∗ B, for all non-unit rules B → ζ, we add A → ζ. Remove unit
rules.
All possible derivations A⇒∗ B are easy to find since the empty rules are already eliminated.

Eliminate terminals in rules, except A→ w

For each terminal w that appears on the right hand side of some rule with some other symbols, we introduce a new
nonterminal Nw, and a rule Nw → w with probability 1. Then we replace w in all other rules with Nw.

Eliminate rules A→ B1B2 . . . Bn (n > 2)
For each rule A→ B1B2 . . . Bn (n > 2), we introduce n−2 new nonterminals X1, . . . , Xn−2, and replace this rule
with the following rules: A→ B1X1, X1 → B2X2, . . . Xn−2 → Bn−1Bn, and assign the following probabilities
to them: P(A→ B1X1) = P(A→ B1B2 . . . Bn), P(X1 → B2X2) = 1, . . . P(Xn−2 → Bn−1Bn) = 1.

CYK Example
The following grammar in CNF is given:

S → NP VP VP → V NP N → time V → like
NP → time VP → V PP N → arrow V → flies
NP → N N PP → P NP N → flies P → like
NP → D N D → an

1 2 3 4 5 6
time flies like arrowan

NP,N V, N V, P D N

NP NP

PP, VP

VP

S

Explanation of Index use in CYK

.
i i+ji+j−1i+l−1 i+l

[i,j,k]β

[i,l,k1]
[i+l,j−l,k2]β

β

j

l

CYK Algorithm
Let all nonterminals be: N1, . . . Nm.

Lecture 22 p.6 CSCI 6509

In the standard CYK algorithm, we have a two dimensional table β in which only the entries βij , 1 ≤ i ≤
i + j − 1 ≤ n, are used. Each entry βij contains a set of nonterminals that can produce substring wi . . . wi+j−1

using the grammar rules, i.e., βij = {N |N ⇒∗ wi . . . wi+j−1}.
If we enumerate all nonterminals: N1, N2, . . . , Nm, then each set of nonterminals βij can be represented by ex-
tending β to be a 3-dimensional table βijk, in which βijk = 1 means that Nk can produce substring wi . . . wi+j−1,
and βijk = 0 that it cannot.

Algorithm 1 CYK
Require: sentence = w1 . . . wn, and a CFG in CNF with nonterminals N1 . . . Nm,

N1 is the start symbol
Ensure: parsed sentence

1: allocate matrix β ∈ {0, 1}n×n×m and initialize all entries to 0
2: for i← 1 to n do
3: for all rules Nk → wi do
4: β[i, 1, k]← 1
5: for j ← 2 to n do
6: for i← 1 to n− j + 1 do
7: for l← 1 to j − 1 do
8: for all rules Nk → Nk1Nk2 do
9: β[i, j, k]← β[i, j, k] OR (β[i, l, k1] AND β[i + l, j − l, k2])

10: return β[1, n, 1]

	PCFG as a Probabilistic Model
	Efficient Inference in PCFG Model
	III Unification-based Approach to NLP
	First-order Predicate Logic
	Formulae and Sentences
	Inference Rules
	Resolution-based Inference System

	Classical Unification
	Most General Unifier
	Unification Algorithms

