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I. Introduction 

The research reported in this paper derives from the 
recent algorithm of Cichelli (1980) for computing machine- 
independent, minimal perfect hash functions of the form: 

hash value : hash key length + 
associated value of the key's f i rst  letter + 
associated value of the key's last letter 

A minimal perfect hash function is one which provides 
single probe retrieval from a minimally-sized table of hash 
identifiers [ keys]. Cichelli's hash function is machine- 
independent because the character code used by a particular 
machine never enters into the hash calculation. 

Cichelli's algorithm uses a simple backtracking 
process to find an assignment of non-negative integers to 
letters which results in a perfect minimal hash function. 
Cichelli employs a twofold ordering strategy which 
rearranges the static set of keys in such a way that hash 
value collisions will occur and be resolved as early as 
possible during the backtracking process. This double 
ordering provides a necessary reduction in the size of the 
potentially large search space, thus considerably speeding 
the computation of associated values. 

In spite of Cichelli's ordering strategies, his method 
is found to require excessive computation to find hash 
functions for sets of keys with more than about 40 members. 
Cichelli's method is also limited since two keys with the 
same f irst and last letters and the same length are not 
permitted. 

Alternative algorithms and their implementations wil l  
be discussed in the next section; these algorithms overcome 
some of the difficulties encountered when using Cichelli's 
original algorithm. Some experimental results are 
presented, followed by a discussion of the application of 
perfect hash functions to the problem of natural language 
lexicon design. 

2. Search Strategies for Ferfect Hash Functions 

2.1. Perfect Minimal Hash Functions 

According to Knuth (1973) a good hash function should 
satisfy two basic requirements: (i) the calculation of the 
hash value for each key should be very fast; and (ii) the 
function should minimize collisions. The type of hash 
function used by Cichelli in indeed calculated quickly 

since i t  consists of the sum of three positive integers 
(assumming that we find the length of each key as part of 
the recognition process). Because Cichelli's algorithm 
finds a perfect hash function, collisions are eliminated 
entirely, but not without expending considerable 
computational effort to find such a hash function for a 
given set of keys. Knuth (1973} estimates that only one in 
ten million functions is a perfect hash function for 
mapping 31 keys into 41 locations. The minimality 
requirement further complicates this computation. 

The basic algorithm consists of a backtrack search of 
the solution space of assignments of integers to the 
letters which occur as f i rst  or last letters of keys. The 
complexity of this problem grows exponentially in the 
number of keys which share letters in the chosen positions. 
Cichelli therefore uses a two-step ordering heuristic which 
limits the size of the search space. The static set of keys 
is f i rst  arranged in decreasing order of the sum of the 
frequencies of occurrence of their f i rst  and last letters, 
This ordering ensures that the most frequent letters are 
the f irst to be assigned integer values. In the second 
step, the order of the key l ist  is modified so that any key 
whose hash value is determined (because its f i rst  and last 
letters have both occurred in keys which precede the 
current one) is placed next in the l ist.  This double 
ordering has the effect of forcing conflicts to occur early 
in the backtrack search, thereby pruning large branches of 
the potential search tree. 

We have extended Cichelli's efforts in two major ways. 
First we have devised methods which find solutions 
significantly faster, enabling us to accommodate the much 
larger number of keys necessary for application of this 
method to natural language lexicons. The second extension 
is to make the method more generally applicable by 
including a procedure which finds the minimum set of letter 
positions which distinguishes each word from the rest. 

The following is an outline of Cichelli's algorithm: 

ALGORITHM O: 

Step 1: compare each keyagainst the rest. I f  two keys 
have the same f irst  and last letters and the 
same length then report conFlict and stop, 
otherwise continue. 

Step 2: reorder the keys by decreasing sum of 
frequencies of occurrence of f i rst  and last 
letters. 
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Step 3= reorder the keys From the beginning of the l ist  
so that i f  a key has f i rst  and last letters 
which have appeared previously in the l ist,  
then that key is placed next in the l ist.  

Step 41 add one word at a time to the solution, checking 
for hash value conflicts at each step. I f  a 
conflict occurs, go back to the previous word 
and vary its associated values until i t  is 
placed in the hash table successfully, then 
add the next word. 

Two basic alternatives to Cichelli's algorithm, with 
several variations of each, are reported, followed by a 
discussion of the performance of the algorithm on sample 
sets of keys. 

One approach is to adapt Cichelli's algorithm to Find 
minimal perfect hash functions For each subset of keys of 
the same length. This eliminates the use of the key length 
as part of the hash function. In order to combine the 
separate hash tables for each subset into one table for the 
entire set, we need only add an offset to the hash function 
for each subset. A separate table of associated values is 
kept for each subset of the keys. The reduction in 
execution time for l~ keys partitioned into S equal-sized 
subsets is 

O((C exp l~I) - (S .~ (C exp (I,,I/S)))) 

for some constant C. Additional overhead includes storing 
the value of an offset and an assignment of integers for 
each subset. 

A useful addition to this method, and to any of the 
others, would be to generalise the selection of letter 
positions, eliminating the need to delete one of any pair 
of words which have the same length and the same f i rst  and 
last letters. The proc-ess of finding a minimal set of 
letter positions which distinguishes each key is 
exponential in the maximum key length, i0e., O(2 exp M), 
where Ivl is the maximum key length. There are (2 exp M) 
possible combinations of letter positions to choose from, 
and each time we consider one of the possible combinations 
we must ensure that none of the words have the same set of 
chosen letters. This calculation adds a cost factor of (l~I 
exp 2)/2 (where l~I is the number of keys), giving us 

O((N exp 2) ~ (2 exp lvl)). 

This selection process is clearly an expensive addition to 
any of our algorithms and might be better left to the 
specification of the user. In either case, there is 
certainly some set of positions whichdistinguishes each 
key (if we take into account the ordering of the letters), 
ensuring that we can place all the keys in the hash table. 

Ne now give an informal outline of this modified 
version of Cichelli's algorithm. 

ALGORITHM 1: 

Step 1~ sort the keys into ascending order, by length, 
in order to partition the set of keys into 
subsets of keys which share the same 
length. Nith each of these subsets do the 
following steps, 

Step 2.* choose the smallest set of letter positions such 
that no two keys of the same subset have 
the same set of Istters in the chosen 
positions. 

Step 3** Employ Cichelli's two ordering strategies, with 
Slingerland and Naugh's refinement, to 
produce an (approximately) optimal 
ordering of the keys and, therefore, of 
the letters which occur in chosen 
positions. 

Step 4.* make the upper bound of the range of associated 
values equal to the number of keys in the 
current subset. The lower bound of this 
range is zero for every subset. 

Step 5.* use Cichelli's backtracking procedure to place 
each key of the current subset in the 
subrange of the hash table defined by 
[offset..(p~m)], where each offset is the 
offset for the current subset of keys, p 
is the number of chosen positions, and m 
is the upper bound of the range of 
associated letter values. 

Step 6~ i f  any unprocessed subsets remain, adjust the 
offset of the next subset.* initialise the 
offset to the number of keys which have 
already been placed in the hash table, say 
n, then find the f i rst  open position r, r 
>= n. This is the new offset for the next 
subset.. 

Step 7~ i f  any unprocessed subsets remain, return to 
step2| otherwise all keys have been placed 
in the hash table and the algorithm 
terminates. 

I f  p letter positions are chosen for the subset of 
keys of length i, then the hash value is of the form~ 

hash value = offset(i) + 
assoc value(i, key(Ist selected letter pos) + 
assoc value(i, key(2nd selected letter pos) + 

assoc value(i, key(pth selected letter pos) 

For each key length a record is kept of the offset, the 
selected letter positions, and the associated letter 
values. 

Algorithm I wil l  produce the maximum cost reduction in 
a situation where the set of keys is partitioned by length 
into several subsets, each of a relatively small size. This 
algorithm's complexity is now dominated by the size of its 
largest subset, rather than by the cardinality of the set 
of keys as a whole; the minimum size of the largest subset 
occurs when the keys are most evenly distributed by length. 
Among the 200 most frequently-occurring ~.nglish words, 80% 
have lengths of 3, 4, or 5. The largest of these subsets is 
words of length 4, containing about one third of the words 
in this rank. The maximum word length in the rank is 9. 

Although our experimental results are inconclusive 
thus far for this algorithm, we expect that i t  wil l  be no 
more than a factor of S (the number of different word 
lengths which occur in a set of keys) faster than 
Cichelli's original algorithm. This represents a 
significant improvement but not enough to allow large sets 
of keys (500-10.00) to be accommodated. 

This algorithm generalises the process of choosing 
letter positions to searching for a minimal set of letter 
positions which will distinguish all keys - a maximally 
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independent set of letters. For keys of only one letter, 
only one position is used. Keys of two letters wil l  often 
need to use both letters, etc. This problem reduction 
approach requires additional storage for indexing tables 
which indicate letters used in associated value 
computation. The cost to maintain this information is 
bounded by O(l~I~M) storage locations for M letter positions 
used in the hash function and l~ keys. 

Associated value assignments need to be made for each 
length subset of hash keys. I f  we have S subsets~ the 
increase in storage allocations wil l  be S.26. 

Two related difficulties in Cichelli's algorithm are 
eliminated with this f i rst  algorithm, Keys such as 'his' 
and 'has' would never be permitted to have 'h' as the key's 
f irst selected letter and 's' as the key's last selected 
letter, since their key lengths are the same (this would 
also be true of 'label' and 'level'). Also, a key such as 
'loop' could be kept distinct from a key such as *pool' (as 
could 'on' and 'no') through the use of a constant 
multiplier for the key's last selected letter position (see 
below), or by maintaining a separate vector of associated 
letter values for each position. 

2.2. Almost-Minimal Perfect Hash Functions 

In practise, almost-minimal perfect hash functions 
compare favourably with minimmal perfect hash functions. An 
almost-minimal perfect hash function is one which leaves no 
more than 20°4 of the hash table locations unused. The next 
algorithm searches effectively for almost-minimal perfect 
hash functions which prove to be particularly well-suited 
for application to the natural language lexicon. 

The essential part of the problem of finding a perfect 
hash function is choosing a method of assigning associated 
values to symbols of the alphabet. To arrive at a perfect 
hash function, the assignment should be done efficiently 
and should not lead to collisions, 

As a simple example, consider the following assignment 
of associated values. The symbols of the alphabet A, B, 
, ,  Z are assigned the values 1, 2, . . ,  26 respectively. 
The hash function applied to the word 'program', for 
example, returns 

hash value = length('program') + av('p') + av('m') 
= 7+16+13 = 36 

I t  is clear that i f  the word 'program' appears in a set of 
less than 30 keys and this hash function is used, then the 
hash table cannot be minimal or even almost-minimal, by our 
standards. ~Iote also that there are many combinations of 
associated values and word length which give us a hash 
value of 36: an 8 letter word whose f i rst  and last letters 
are 'n't or a 4 letter word whose f i rst  letter is 'r '  and 
last letter is 'n', for instance. We are led to the 
conclusion that a randomly chosen simple assignment of a 
series of distinct values to letters wil l  not generally 
provide a good solution to our problem. 

We have investigated some natural-series which produce 
distinct values and whose elements, when added, produce 
distinct sums. One such series is the following: 

F(1) = 0 

F{2) = m 
F(3) = 3m 

F(n) = 2*F(n-1) + F(n-2), n>3 

The series is 0, m, 3m, 7m, 17m, 41m, .... I f  we 
choose m to be the length of the longest word and assign 
the values to letters in decreasing order of their 
frequencies of occurrence in the l is t  of keys, we obtain 
all desired distinct values. This assignment method ensures 
that all pairwise sums of associated values are distinct 
as well. The difficulty in assigning associated values in 
this way is that the magnitude of the values rises very 
rapidly, even i f  the multiplicative factor m is small; with 
re=l, the tenth most frequent letter wil l  get a value of 
1731, which obviously defeats our purpose of producing 
almost-minimal sized hash tables. 

Series of this nature are useful, however, in limiting 
the magnitude of associated values. Small hash values are 
convenient and lead to minimality. In order to keep hash 
values as small as possible, we must allow letters to share 
associated values. This possible duplication of values 
reduces the advantage of assignment of series of distinct 
associated values, since we again have to check for 
conflicts with each new vector of assigned values. 
l~evertheless, because we have assigned the smallest 
limiting values to the most frequently-occurring letters 
(those which are most likely to be involved in collisions), 
hash values do tend to remain small in the f irst 85-90% of 
the l ist of keys. After this there usually appears a series 
of increasingly large gaps which reduce the loading factor 
to about 42% for 200 keys. 

Two series which produce distinct pairwise sums have 
been used in an implementation of Algorithm 2 [outlined 
below] based on the preceding ideas. The f i rst  series 
utilised is the powers of 2, which has the property that 
the sums of any two different sets of distinct members of 
the series are different. The series of this type which 
grows most slowly is clearly the one with base 2.* 

F(1) = 2 exp 0 

F(2)=2exp 1 

F(n) = 2 * F(n-1) 

Another candidate series is the Fibonacci series, 
suitably modified. We add one to the term at each step in 
the production of the series, thus: 

G(1) = I 
G(2) = 2 

G(n) = G(n-2) + Gin-l l  + 1 

There are no pairwise sums here, and this series grows 
slower than the powers of 2. 

The algorithm which uses one of these series to assign 
limiting values can be described (informally) as follows: 

ALGORITHM 2: 

Step I: initialise all associated values to the temporary 
values computed according to some natural 
series and assign them to the letters with 
the highest frequency of occurrence, thus 
obtaining the lowest values. Apply step2 to 
each key, Ki (0<i<# of keys), in turn. 

Step 2: i f  Ki(1), the f i rst  character, has been 'tried' 
already, see whether Ki(length Ki), the last 
character, has been 'tried'. I f  both have 
been tried, proceed to the next key, 

71 



Step 3,' for an 'untried' character, vary the associated 
value from 0 to the temporary value in 
increments of I until no collision occurs in 
the hash values. [A boolean Function, CHECK, 
makes the necessary alterations of the hash 
values of the key l ist  and then makes an 
exhaustive search for collisions]. 

Step 4,' once a letter has been assigned an associated 
value, mark this letter 'tried'. 

Algorithm 2 is not a backtracking algorithm in the 
classical sense, but an intelligently controlled 
ennumerative one. Since no associated value can exceed the 
temporary value given to the letter in step1 (because the 
temporary values are guaranteed to avoid collisions!), 
there is an upper bound to the search time. I l l  we are 
using powers of 2 as temporary values, adding one letter to 
the set of those which wil l  be assigned values doubles the 
number of possible combinations; this upper bound may 
become quite large]. The time complexity of the CHECK 
Function is O(N exp 2) because we need to compare each key 
against all the rest. Each time we try a new assignment we 
invoke CHECK, so i f  s letters of the alphabet occur in 
selected positions then the Function wil l  be called, in the 
worst case, the sum over all i, 0{i<s+l, of F(i). I f  we add 
a multiplicative Factor m, such as the word length, the 
worst case cost is multiplied by m. The overall time 
complexity, in the worst case, of the execution of step3 is 
O((N exp 2)*m*SUM(F(i),'0<i<s+l)). Using the powers of 2, 
the third Factor is no greater than 2*(2 exp 26) = 2 exp 
27, about 128 million. 

In practise, this algorithm tends to find a solution 
long before the worst case occurs; when the set of keys is 
small enough we often get an almost-minimal hash Function. 
Nhen the number of keys approaches 200, the loading Factor 
tends to fal l  to about 50% or less. 

A third algorithm has been written to produce almost 
minimal hash Functions quickly, enabling us to apply the 
method to some large sets (>500) of keys with good results. 

Algorithm 3 assigns a set of associated values for 
each selected letter position. In effect we distinguish the 
occurrence of, say, an 'e' in the First position from one 
in the third position. Words such as 'on' and 'no', 'was' 
and 'saw', and 'live' and 'evil '  are now easily 
distinguished. I f  we have p-selected letter positions, then 
the hash Function has the Form,' 

hash value = assoc value of letter in Ist selected pos'n + 
assoc value of letter in 2nd selected pos'n + 

assoc value of letter in p-th selected pos'n 

This algorithm utilises a pre-processor which First 
orders the keys by the product of the Frequencies of 
letters in selected positions. The words are then reordered 
as in previous algorithms so that words which share letters 
are grouped together. Any word which has a letter in a 
selected position which occurs in that word only wil l  be 
one of the last keys added to the hash table; this unique 
letter occurrence makes i t  possible to place this key in 
any open location in the hash table without disturbing the 
values of the remaining letters which might affect the hash 
values of other keys. 

Keys are placed in the hash table in groups. Groups 
have two properties: (i) one letter is common to all keys 
in the group; and (ii) all other letters which occur in the 

group have already been assigned values. Grouping the words 
is determined as part of the preprocessing. Ne may find 
that some pair of words in a group have equal sums of 
associated values previously assigned to the respective 
sets of letters which the words do not have in common. Nhen 
this situation occurs, the value of the letter held in 
common cannot affect the existance of a collision, so we 
must change some previously assigned associated value(s). 
In order to minimise the number of letters (and keys) which 
need to be re-considered, we choose to change the value of 
the letter which is in only one of the two words and most 
recently was assigned a value. That letter's group and all 
that were added after i t  are removed from the hash table, 
and placed at the head of the l ist  of groups not yet added. 
Ne then continue adding groups to the hash table until all 
the keys are included. Clearly, the last keys added, those 
with unique letter occurrences, can be placed anywhere in 
the table beyond the sum of letters which already have 
values. These keys tend to Fill gaps in the hash table, 
promoting the minimality of the size of the hash table. 

A brief outline of the algorithm Follows,' 

ALGORITHM 3: 

Step 1: the user is prompted to select a set of letter 
positions. 

Step 2: check for conflicts (two keys having the same 
characteristics). I f  conflict occurs, continue 
with step 1; otherwise continue with step3. 

Step 3: order the keys so that the most frequent letters 
occur earliest in the l ist  of keys. Nords 
with a unique letter occurrence in some 
position are placed at the end of the l ist.  

Step 4t add the next group of keys to the hash table by 
varying the value of any letter which hasn't 
occurred before. I f  an unresolvable conflict 
occurs, return to an earlier stage in the 
calculation by removing conflicting groups 
from the hash table. I f  no groups remain, stop; 
otherwise performs step4 again. 

The APL implementation of this algorithm, running 
under the Michigan Terminal System [MTS] on an IBM 4341 
computer, has produced excellent results. 

3. Experimental Results 

Ne now illustrate some basic programming results. The 
programs were originally written in UCSD Pascal and run on 
a North Star Horizon I I  micro-computer. Since we decided to 
try additional experiments in APL, we translated the 
programs to APL and Pascal/UBC and ran them on an IBM 434] 
computer under the MTS operating system. 

Ne First present the results of using Cichelli's 
algorithm, algorithm 0, and our algorithm 2 on several test 
cases, including those given by Cichelli. These algorithms 
are both implemented in Pascal programs. The Final pages of 
our examples illustrate an interactive version of algorithm 
3 with most of the variations mentioned in the text 
incorporated. The outpuut of algorithm 3 was produced by an 
AFL program. 
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ALGORITHM 0 

StartinS at 14:50:48 on FEB 19, 1981 
Solvin~ for I solution 
Placin~ 31 words 

FIND PERFECT HASH FUNCTIONS FOR: 
THIRTY-ONE MOST FREQUENT WORDS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

THE, OF, AND, TO, A, IN, IT, THAT, I, IS, 
FOR, BE, WAS, YOU, AS, WITH, HE, HAVE, 
ON, BY, NOT, AT, THIS, ARE, WE, HIS, BUT, 
THEY, ALL, WILL, OR 

NO CONFLICTS 
Startin~ search at 14:50:49 

FIRST SECOND 
HASH ASSOC ASSOC 

KEY VALUE VALUE VALUE 

I I I 0 0 
2 IT 2 0 0 
3 YOU 3 0 0 
4 THAT 4 0 0 
5 AT 5 3 0 
6 IS 6 0 4 
7 A  7 3 3 
8 THIS 8 0 4 
? AS 9 3 4 

10 THE 10 0 7 
I I  TO 11 0 9 
12 HIS 12 5 4 
13 ARE 13 3 7 
14 HE 14 5 7 
15 FROM 15 9 2 
16 HAVE 16 5 7 
17 BY 17 15 0 
18 BUT 18 15 0 
19 AND 19 3 13 
20 OF 20 9 9 
21 HAD 21 5 13 
22 IN 22 0 20 
23 NOT 23 20 0 
24 BE 24 15 7 
25 WAS 25 18 4 
26 HER 26 5 IB 
27 WITH 27 18 5 
28 WHICH 28 18 5 
29 OR 29 9 18 
30 FOR 30 9 18 
31 OF 31 9 20 

PRINTING AT 14:51:06 FEB 19, 1981 
addword called 7264 times. 
tr~ called 23467 times. 

16775 milliseconds of CPU time elapsed. 

ALGORITHM 2 

THIRTY-ONE MOST FREQUENT WORDS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

THE, OF, AND, TO, A, IN, IT, THAT, I ,  IS, FOR, 
BE, WAS, YOU, AS, WITH, HE, HAVE, ON, BY, NOT, 
AT, THIS, ARE, WE, HIS, BUT, THEY, ALL, WILL, 
OR 

Callin~ ' t r y '  at 19:43:04 on FEB 12, 1981 
Finished at 19:43:06 

2781 milliseconds of CPU time elapsed. 

FIRST SECOND 
HASH ASSOC ASSOC 

KEY VALUE VALUE VALUE 

l I  1 0 0 

2 IT 2 0 0 
3 THAT 4 0 0 
4 AT 5 3 0 
5 IS 6 0 4 
6A 7 3 3 
7 THIS 8 0 4 
8 AS 9 3 4 
9 THE I0 0 7 

I0 TO i i  0 9 
11 HIS 12 5 4 
12 ARE 13 3 7 
13 HE 14 5 7 
14 OF 15 9 4 
15 HAVE 16 5 7 
16 IN 17 0 15 
17 NOT 18 15 0 
18 WAS 19 12 4 
19 FROM 20 4 12 
20 WITH 21 12 5 
21 WHICH 22 12 5 
22 FOR 23 4 16 
23 HER 24 5 16 
24 BUT 25 22 0 
25 ON 26 9 15 
26 OR 27 9 16 
27 BY 28 22 4 
28 YOU 29 4 22 
29 AND 30 3 24 
30 BE 31 22 7 
31 HAD 32 5 24 
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ALGORITHM 0 

Starting at 15:31129 on FEB 20, 1981 
Solvin~ for I solution 
Placing 36 words 

FIND PERFECT HASH FUNCTIONS FORt 
THIRTY-SIX PASCAL RESERVED WORDS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PROGRAM, FUNCTION, LABEL, UNTIL, BEGIN, 
FOR, NIL, IF, ARRAY, IN, VAR, REPEAT, WITH, 
PROCEDURE, THEN, NOT, PACKED, RECORD, 
FILE, MOO, OF, OR, SET, AND, DIV, CONST, 
WHILE, TYPE, OTHERWISE, TO, GOTO, DOWNTO, 
CASE, ELSE, END, DO 

NO CONFLICTS 
Starting search at 15:31:30 

FIRST SECOND 
HASH ASSOC ASSOC 

KEY VALUE VALUE VALUE 

I DO 2 0 0 
2 END 3 0 0 
3 ELSE 4 0 0 
4 TO 5 3 0 
5 DOWNTO 6 0 0 
6 TYPE 7 3 0 
7 WHILE 8 3 0 
8 OTHERWISE 9 0 0 
9 OF 10 0 B 

I0 OR 11 0 9 
11 FILE 12 8 0 
12 NOT 13 7 3 
13 THEN 14 3 7 
14 RECORD 15 9 0 
15 PACKED 16 I0 0 
16 CASE 17 13 0 
17 REPEAT 18 9 3 
18 PROCEDURE 19 10 0 
19 FOR 20 8 9 
20 CONST 21 13 3 
21 AND 22 19 0 
22 FUNCTION 23 8 7 
23 MOO 24 21 0 
24 NIL 25 7 15 
25 GOTO 26 22 0 
26 DIV 27 0 24 
27 IN 28 19 7 
28 IF 29 19 8 
29 SET 30 24 3 
30 BEGIN 31 19 7 
31 UNTIL 32 12 15 
32 WITH 33 3 26 
33 ARRAY 34 19 I0 
34 LABEL 35 15 15 
35 VAR 36 24 9 
36 PROGRAM 38 10 21 

PRINTING AT 15~31131 FEB 20, 1981 
addword called 1392 times. 
tr~ called 4456 times. 
1625 milliseconds of CPU time elapsed. 

ALGORITHM 2 

THIRTY-SIX PASCAL RESERVED WORDS 

PROGRAM, FUNCTION, LABEL, UNTIL, BEGIN, 
FOR, NIL, IF, ARRAY, IN, VAR, REPEAT, WITH, 
PROCEDURE, THEN, NOT, PACKED, RECORD, FILE, 
MOD, OF, DR, SET, AND, DIV, CONST, WHILE, 
TYPE, OTHERWISE, TO, GOTO, DOWNTO, CASE, 
ELSE, END, DO 

Calling ' t r y '  at 12:08=29 on FEB 20, 1981 
Finished at 12=08:51 
21103 milliseconds of CPU time elapsed. 

FIRST SECOND 
HASH ASSOC ASSOC 

KEY VALUE VALUE VALUE 

1 DO 2 0 0 
2 END 3 0 0 
3 ELSE 4 0 0 
4 TO 5 3 0 
5 DOWNTO 6 0 0 
6 TYPE 7 3 0 
7 OR 8 0 6 
8 OTHERWISE 9 0 0 
9 NOT I0 4 3 

I0 THEN I I  3 4 
I I  RECORD 12 6 0 
12 NIL 13 4 6 
13 OF 14 0 12 
14 REPEAT 15 6 3 
15 FILE 16 12 0 
16 LABEL 17 6 6 
17 WHILE 18 13 0 
18 PACKED 19 13 0 
19 AND 20 17 0 
20 FOR 21 12 6 
21 PROCEDURE 22 13 0 
22 CASE 23 19 0 
23 FUNCTION 24 12 4 
24 MOD 25 22 0 
25 IN 26 20 4 
26 CONST 27 19 3 
27 GOTO 28 24 0 
28 DIV 29 0 26 
29 ARRAY 30 17 8 
30 UNTIL 31 20 6 
31 SET 32 26 3 
32 WITH 33 13 16 
33 IF 34 20 12 
34 UAR 35 26 6 
35 BEGIN 36 27 4 
36 PROGRAM 42 13 22 
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ALGORITHM 3 ALGORITHM 2 

SEVENTY-FIVE PASCAL KEY WORDS 
AND RESERVED WORDS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

MASHING STARTED AT 1981 5 19 15 44 53 139 
MASHING FINISHED AT 1981 5 19 15 45 12 114 
CPU SECONDS USED IN MASH IS 1.936 
NUMBER OF TIMES THROUGH MASH MAIN LOOP IS 66 

LETTER POSITIONS USED~ I 2 4 

LETTER VALUES 

LETTER POSN I POSN 2 POSN 4 
. . . . . . . . . . . . . . . . . . . . . . . .  

'A' 18 15 22 
'B' 49 25 0 
'C' 3 0 17 
'D' 12 0 3 
'E' 0 0 0 
'F' 11 2 27 
'G' 40 0 58 
'H' 0 21 25 
' I '  19 24 9 
'K' 0 0 37 
'L' 28 67 0 
'M' 31 0 0 
'N' 31 11 1 
'0' 9 6 4 
'P' 1 0 33 
'O' 0 48 0 

'R' 0 11 1 
'S '  3 0 20 
'T '  1 60 9 
"U" 35 17 40 
'V' 51 0 28 
'W' 20 0 35 
'X' 0 32 0 
'Y'  0 67 0 

HASH TABLE 

4 REAL 29 CHAR 
5 RESET 30 PUT 
6 REPEAT 31 SIN 
7 READ 32 COS 
8 REWRITE 33 IN 
9 READLN 34 CONST 

i0 RECORD 35 AND 
11EOLN 36 EOF 
12 ROUND 37 INTEGER 
13 TO 38 PROCEDURE 
14 TEXT 39 FILE 
15 SET 40 OF 
16 TRUE 41 SUCC 
17 END 42 LN 
IB TRUNC 43 MOO 
19 PRED 44 ARCTAN 
20 PAGE 45 WRITE 
21 FOR 46 WHILE 
22 CASE 47 WRITELN 
23 OR 48 LABEL 
24 DO 49 NOT 
25 DOWNTO 50 IF 
26 ORD 51 FALSE 
27 THEN 52 GET 
28 CHR 53 FUNCTION 

54 GOTO 
55 SQR 
56 ARRAY 
57 PACK 
58 NIL 
59 PACKED 
60 UNTIL 
61MAXINT 
62 BOOLEAN 
63 BEGIN 
64 SQRT 
65 OUTPUT 
66 ABS 
67 DIV 
68 EXP 
69 NEW 
70 VAR 
71 ELSE 
72 TYPE 
73 WITH 
74 UNPACK 
75 INPUT 
76 DISPOSE 
77 PROGRAM 
78 OTHERWISE 

TWO HUNDRED MOST FREQUENT ENGLISH WORDS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Callin~ ' t r y '  at 20:36:43 on FEB 19, 1981 
Finished at 22t54:19 

8255568 milliseconds of CPU time elapsed. 

FIRST SECOND 
HASH ABSOC ASSOC 

KEY VALUE VALUE VALUE 

I JUST 6 0 2 
2 THAT 8 2 2 
3 THOUGHT ii 2 2 
4 THE 14 2 9 
5 TIME 15 2 9 
6 THERE 16 2 9 
7 SET 18 13 2 
8 THIS 19 2 13 
9 TIMES 20 2 13 
10 THINGS 21 2 13 
11 SHE 25 13 9 
12 SOME 26 13 9 
13 SINCE 27 13 9 
14 DONT 28 22 2 
15 DIFFERENT 33 22 2 
16 END 34 9 22 
17 SOMETIMES 35 13 13 
18 SAID 39 13 22 
19 SOUND 40 13 22 
20 SHOULD 41 13 22 
21 AT 42 38 2 
22 ABOUT 45 38 2 
23 ALMOST 46 38 2 
24 DID 47 22 22 
25 THEIR 48 2 41 
26 ARE 50 38 9 
27 TOGETHER 51 2 41 
28 ABOVE 52 38 9 
29 AS 53 38 13 
30 EVER 54 9 41 
31 ALWAYS 57 38 13 
32 ANIMALS 58 38 13 
33 NOT 60 55 2 
34 THEN 61 2 55 
35 NIGHT 62 55 2 
36 AND 63 38 22 
37 ASKED 65 38 22 
38 AROUND 66 38 22 
39 READ 67 41 22 
40 EVEN 68 9 55 
41 SOON 72 13 55 
42 A 77 38 38 
43 DOWN 81 22 55 
44 AIR 82 38 41 
45 AFTER 84 38 41 

i J 

192 MAY 380 220 157 
193 MANY 381 220 157 
194 FOLLOWING 404 214 181 
195 YOU 405 157 245 
196 UNTIL 428 245 178 
197 FROM 438 214 220 
198 IF 451 235 214 
199 I 471 235 235 
200 UP 47b 245 229 
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ALGORITHM 3 

FIVE HUNDRED MOST FREQUENT ENGLISH WORDS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

MASHING STARTED AT 1981 5 19 14 19 55 987 
MASHING FINISHED AT 1981 5 19 14 20 30 147 
CPU SECONDS USED IN LASH IS 23.288 
NUMBER OF TIMES THROUGH LASH MAIN LOOP IS 112 

LETTER POSITIONS USED~ 1 2 3 4 I0 

LETTER VALUES 

LETTER POSN 1 POSN 2 POSN 3 POSN 4 POSN i0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

'A' 34 11 50 365 40 
'B' 7 18 1 1 0 
'C' I 7 99 153 20 
'D' 15 0 107 122 47 
'E' 98 0 0 0 0 
'F' 0 125 23 B7 223 
'G' 91 100 2 243 59 
'H' 3 8 51 324 106 
' I '  229 7 166 177 1 
'J '  0 0 0 6 0 
'K' 368 0 147 72 311 
'L'  39 113 127 32 188 
'M' 4 61 8 184 264 
'N' 21 45 11 18 5 
' 0 '  152 1 1 210 201 
'P' 60 230 24 301 2 
' g '  59 0 0 0 0 
'R' 190 64 1 II 54 
'S' 0 254 2 121 7 
'T' i 161 7 26 17 
'U' 71 14 204 251 0 
'V' 87 34B II0 191 0 
'g' 2 28 17B ? 345 
' X '  0 2 26 7 0 
'Y '  198 144 203 286 9 
' "  0 0 2 132 0 

HASH TABLE 

3 SEE 4 WE 5 HE 6 ME 
7 WERE S HERE 9 BE 10 MORE 

11 SHE 12 THE 13 SOME 14 COME 

GOB I'M 689 IF 696 INTO 703 ALWAYS 
768 OPINION 771 KNEW 772 KNOW 821 ASK 

4. Application to l~Iatural Language Lexicon Design 

Retrieval methods usually assume equal likelihood of 
retrieval for each data item (Knuth, 1973)0 I t  is well 
documented in the literature of lexicography (Dewey, 1923; 
Carroll et a l ,  1971) that this is not the case for the 
English language (or, presumably, for any natural 
language). I~le propose to make use of information about the 
frequency of occurrence of English words and a judicious 
mix of common search and hash encoding techniques to 
provide an efficient organisational strategy for a natural 
language lexicon. 

I f  the dictionary is formed by putting properties on 
LISP atoms (as is done in many natural language systems), 
the entire search is performed by a LISP system. Most 
implementations of LISP (Allen, 1978, pp 275-277) use an 
'object l i s t '  to access atoms, usually implemented as hash 
buckets. A built-in general purpose hash function is 
provided which distributes the hash values of the complete 
set of keys in the dictionary (hopefully equally) among the 
hash buckets, each of which is searched sequentially. The 
access time is therefore dependent on the number of buckets 
and on bucket size. [The retrieval time is dependent on the 
actual distribution of the keys among the buckets. For any 
hash function, there exist some set of keys which wil l  
produce very uneven distributions. In the worst case, all 
keys wil l  have the same hash value, so the average cost of 
a successful search would be N/2| for an unsuccessful 
search, the cost would be H (where l~ is the number of 
keys)]. 

In addition to this search for the atom name, the 
property l is t  must be scanned for dictionary properties. 
I f ,  for the majority of items in the lexicon, this is the 
only property on the property l ist,  the time required for 
any lexical access is approximately equal to the hash 
encoding scheme time. Comparatively, the number of words 
with many properties remains insignificant and wil l  not be 
considered. 

Any desirable search technique can be imposed on an 
explicitly-stored dictionary. When we attempt to organise 
the lexicon in a way that minimises retrieval time, many 
factors affect our choices, such as the size of the lexicon 
and the need for secondary storage. Some design criteria, 
however, will improve the access time for any linear search 
algorithm of a natural language lexicon. One such design 
feature is to order the dictionary according to the 
relative frequency of the use of the letters in words 
(Cercone and Mercer, 1980). 

The proposal we wil l  explore here is to divide the 
dictionary into two or more parts to form dictionary 
hierarchies. This feature is most interesting when one 
considers the very high frequency of use of a very small 
number of words, but i t  is also important when one needs to 
consider how to divide a dictionary over different storage 
media. For example, 732 items comprise 75% of the words 
used in representative text. A possible three-level 
hierarchy would be 64 items that account for 50% of the 
words in the text (see T~hle 4.1), 668 items that comprise 
another 25% and the remainder that provide the final 25%. A 
hash into the f i rst  level of 64 words followed by a binary 
search of the second level (which on the average would 
require about 9 accesses), followed by a trie search of the 
third level would provide a very efficient search. 
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I I REL.] I 
I HORD I FREQ. I TOTAL I 
I . . . . . .  I - - - - I  I 

11E 17.3101 7.310l 
OF 13.~8111.3081 
P~D 13.280114.5881 
TO 12.924117.5121 
A 12.120119.6321 
IN 12,116121,7481 
IT II.q88123.2361 
THaT 11.367124,&031 
I 11.236125.8391 
IS 11.224127,0631 

I ~ L . I  I 
HORD IFREO.I TOTALI 

. . . .  I - - - I - - - - - I  
FOR 11.035128.0981 
BE 10.956129.0591 
HAS 10.850129.90ql 
YOU 10.808130.7121 
AS I 0.782131.49~11 
gTIH 10.727132.2211 
HE 10.687132.9081 

10.658133,5~1 
Og 10.643134.2091 
BY 10.600134.8091 
HOT 10.589135.3981 
AT 10.585135.9831 
THIS 10.572136.5551 
/~E 10.599137.10ql 
HE I 0.537137,6411 
HIS 10.517138.1581 

10.50ql38.~21 
THEY 10.'195139.1571 
ALL 10.467139.6241 
g]lJ_ 10,464140.0981 
OR 10.458140,5461 
~CH10.459141.0001 

10,433141.4331 
10,4141'tl.8471 

HAS 10.390 i42.237i 
ONE 10.389142,6261 
OUR 10.357143.9831 

I I REL.I I 
i NORD IFREQ.I TOTALI 
I----- I  . . . . .  I ~ - I  

AN I 0,330 H3.313t 
10o3291q3.UI21 

BY 10.329143.9711 
THEJEI 0.3291'H.300 I 
NO 10.3211~.6211 
TI¢~I 0.31914'1.9't0 I 
IERE 10.307145.2471 
SO 10,300145.5471 

I0.285145,8321 
YEIR 10.283146,1151 
C~ 10.277146.3921 
HOULDIO,267146.6591 
IT 10,2~1'S.9221 
TH~ 10.262147.18ql 
gi~T 10.260147,4441 
HE 10.257147.7011 
gltO 10.246147.9491 
DO 10.239148.1881 
HI EH 10.237148.4251 
HER I 0.234148.~591 
I]HE 10.232148,8911 

10.217149,1081 
AHY 10,210149,3181 
HORE 10.210 H9.5281 
HOg 10,210149,7:381 
UP 10,2071~,9~1 
OUT 10.206150.1511 

Table 4.1. The 64 Most  F requent l y  Used Nords.  
(adapted from Dewey,  1923) 

Lexicon storage is as crucial an issue as the 
retrieval of lexical information. Common structure sharing 
and morphological analysis contribute towards efficient 
space utilisation; certain dialects of LISP use various 
techniques, such as CDR-encoding, to reduce the 
representational overhead. The dictionary represented as a 
trie (Knuth, 1973) requires less space because letters are 
not repeated unnecessarily in successive words. Some 
representational overhead is incurred, however, by the 
required pointers. 

The previous discussion has considered how to minimise 
the space required by the lexicon. Ne now present a short 
synopsis of some typical lexicon designs. For the purposes 
of this discussion we wil l  consider lexicons that contain 
large quantities of information in three representative 
sizes, (i) small - 200 entries or less; (ii) medium - 2000 
to 4000 entries; and (iii) large - 30,000 to 60,000 
entries. Typically, a small lexicon gains l i t t le  From 
complex organisation schemes. Our implementation of 
Algorithm 3, however, can compute almost-minimal hash 
functions for most lexicons of small size. One drawback is 
that we have to store 26,S associated values when S letter 
positions are selected, making this table's size the same 
order of magnitude as the dictionary itself. Of course, 
search time would be cut considerably, so the storage 
overhead might st i l l  be found acceptable. 

Medium size lexicons need to be analysed differently; 
i f  the dictionary can f i t  in random access memory, a binary 
search would provide efficient access of items, 
supplemented by hash encoding into a mini-dictionary of the 
most common words. There is no space advantage using a trie 
structure because the overhead in associated pointers is 
high and there is l i t t le  common spelling among so Few 
words. IF the lexicon cannot Fit into memory, i t  is 

appropriate to treat the medium size lexicon as a large 
lexicon. 

Large lexicons are easier to analyse because they 
typically require secondary storage media. Our major 
concern in this case is to ensure that the number of 
retrievals from secondary memory is minimised. The 
favourable results we have obtained from Algorithm 3 lead 
us to consider including the 732 most frequent words in a 
single almost-minimal hash table, giving us one-probe 
retrieval in 75% of the cases. The remaining, say, 50,000 
words could be mapped by a second hash function into 50 
subsets of about 1000 words each. [In order to preserve the 
machine-independence of the algorithm, this second hash 
function could be based on the ordinal positions of letters 
in the alphabet rather than on the machine character code]. 
These could be stored separately in secondary memory. For 
each of these subsets, compute an almost-minimal perfect 
hash function, storing the associated values in the same 
secondary memory location as the lexical information 
itself. I f  the key we are searching for is not in the table 
of most-frequent words, then this scheme would perform a 
hash to select the proper second-level table From a 
secondary storage medium; this table would then be searched 
using its own perfect hash Function. This organisation 
would allow us to retrieve any key with three hash 
calculations and one probe of secondary memory. 

5. Concluding Remarks 

He have tried ordering strategies other than the ones 
we have reported above, which were found to be inferior to 
Cichelli's original method. These include ordering the keys 
in terms of their length, which resulted in a hash table 
which did not meet the minimality criteria, and ordering 
the keys by increasing frequency of the letters (rather 
than by decreasing frequencies). 

Discussion with Professor Krishnamoorthy of Rensselaer 
regarding the theoretical limitations of Algorithm 2 
resulted in the following investigation. Consider the 
subproblem in which all the keys have the same length, 
hence the hash function is simplified to the addition of 
two associated values. I f  we take the set {AT, IT, IN, ON, 
TO, AN} and represent i t  by the undirected graph of Figure 
5.1 below, the problem reduces to the assignment of integer 
weights to the nodes of the graph, such that the weights of 
the edges (we define the weight of an edge(u,v) as the 
weight of u plus the weight of v) are all distinct. Ne 
tried Algorithm 2 for the commplete graph illustrated in 
Figure 5.2. 

T 

\ [ /  
Figure 5.1. Figure 5.2. 

Ne ran the program for the words (AA, AB, AC, BB, BCt CC}. 
Here we found a limitation of our method. For a complete 
graph with ten nodes, viz., For the keys Formed from {A, B, 
C, D, E, F, G, H, I, 3}, our implementation of Algorithm 2 
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returned { I ,  2, 4, 8, 13, 21, 31, 45, 66, 81} respectively 
as the associated values. But the minimum set is given by 
{0, 1, 6, 10, 23, 26, 34, 41, 53, 553. This sequence is 
called a B2 sequence and has been exhaustively studies in 
Mumber Theory. The problem o~ finding the absolute minimum 
(or optimum) sequence may well prove NP-complete but this 
proof appears to be a non-trivial problem. 

Ne are currently undertaking a major comprehensive 
study oF these perfect hashing schemes with all the 
variations we mentioned and a number oF other variations we 
are Formulating now. Ne anticipate the modularised Pascal 
and APL programs, which are written, will be available For 
distribution for all those interested by Spring, 1982. 
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