
LEXICON DESIGN USING PERFECT HASH FU$1CTIONS

Nick Cercone, Max Krause, John Boates

Department of Computing Science
Simon Fraser University

Burnaby, British Columbia, CANADA V5A 1S6

I. Introduction

The research reported in this paper derives from the
recent algorithm of Cichelli (1980) for computing machine-
independent, minimal perfect hash functions of the form:

hash value : hash key length +
associated value of the key's f i rst letter +
associated value of the key's last letter

A minimal perfect hash function is one which provides
single probe retrieval from a minimally-sized table of hash
identifiers [keys]. Cichelli's hash function is machine-
independent because the character code used by a particular
machine never enters into the hash calculation.

Cichelli's algorithm uses a simple backtracking
process to find an assignment of non-negative integers to
letters which results in a perfect minimal hash function.
Cichelli employs a twofold ordering strategy which
rearranges the static set of keys in such a way that hash
value collisions will occur and be resolved as early as
possible during the backtracking process. This double
ordering provides a necessary reduction in the size of the
potentially large search space, thus considerably speeding
the computation of associated values.

In spite of Cichelli's ordering strategies, his method
is found to require excessive computation to find hash
functions for sets of keys with more than about 40 members.
Cichelli's method is also limited since two keys with the
same f irst and last letters and the same length are not
permitted.

Alternative algorithms and their implementations wil l
be discussed in the next section; these algorithms overcome
some of the difficulties encountered when using Cichelli's
original algorithm. Some experimental results are
presented, followed by a discussion of the application of
perfect hash functions to the problem of natural language
lexicon design.

2. Search Strategies for Ferfect Hash Functions

2.1. Perfect Minimal Hash Functions

According to Knuth (1973) a good hash function should
satisfy two basic requirements: (i) the calculation of the
hash value for each key should be very fast; and (ii) the
function should minimize collisions. The type of hash
function used by Cichelli in indeed calculated quickly

since i t consists of the sum of three positive integers
(assumming that we find the length of each key as part of
the recognition process). Because Cichelli's algorithm
finds a perfect hash function, collisions are eliminated
entirely, but not without expending considerable
computational effort to find such a hash function for a
given set of keys. Knuth (1973} estimates that only one in
ten million functions is a perfect hash function for
mapping 31 keys into 41 locations. The minimality
requirement further complicates this computation.

The basic algorithm consists of a backtrack search of
the solution space of assignments of integers to the
letters which occur as f i rst or last letters of keys. The
complexity of this problem grows exponentially in the
number of keys which share letters in the chosen positions.
Cichelli therefore uses a two-step ordering heuristic which
limits the size of the search space. The static set of keys
is f i rst arranged in decreasing order of the sum of the
frequencies of occurrence of their f i rst and last letters,
This ordering ensures that the most frequent letters are
the f irst to be assigned integer values. In the second
step, the order of the key l ist is modified so that any key
whose hash value is determined (because its f i rst and last
letters have both occurred in keys which precede the
current one) is placed next in the l ist. This double
ordering has the effect of forcing conflicts to occur early
in the backtrack search, thereby pruning large branches of
the potential search tree.

We have extended Cichelli's efforts in two major ways.
First we have devised methods which find solutions
significantly faster, enabling us to accommodate the much
larger number of keys necessary for application of this
method to natural language lexicons. The second extension
is to make the method more generally applicable by
including a procedure which finds the minimum set of letter
positions which distinguishes each word from the rest.

The following is an outline of Cichelli's algorithm:

ALGORITHM O:

Step 1: compare each keyagainst the rest. I f two keys
have the same f irst and last letters and the
same length then report conFlict and stop,
otherwise continue.

Step 2: reorder the keys by decreasing sum of
frequencies of occurrence of f i rst and last
letters.

Permission to copy without fee all or part of this material is granted
provided that the copies arc not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the

@1981 ACM 0-89791-064-8/81/0500-0069 $00.75 69

publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and /o r specific permission.

Step 3= reorder the keys From the beginning of the l ist
so that i f a key has f i rst and last letters
which have appeared previously in the l ist,
then that key is placed next in the l ist.

Step 41 add one word at a time to the solution, checking
for hash value conflicts at each step. I f a
conflict occurs, go back to the previous word
and vary its associated values until i t is
placed in the hash table successfully, then
add the next word.

Two basic alternatives to Cichelli's algorithm, with
several variations of each, are reported, followed by a
discussion of the performance of the algorithm on sample
sets of keys.

One approach is to adapt Cichelli's algorithm to Find
minimal perfect hash functions For each subset of keys of
the same length. This eliminates the use of the key length
as part of the hash function. In order to combine the
separate hash tables for each subset into one table for the
entire set, we need only add an offset to the hash function
for each subset. A separate table of associated values is
kept for each subset of the keys. The reduction in
execution time for l~ keys partitioned into S equal-sized
subsets is

O((C exp l~I) - (S .~ (C exp (I,,I/S))))

for some constant C. Additional overhead includes storing
the value of an offset and an assignment of integers for
each subset.

A useful addition to this method, and to any of the
others, would be to generalise the selection of letter
positions, eliminating the need to delete one of any pair
of words which have the same length and the same f i rst and
last letters. The proc-ess of finding a minimal set of
letter positions which distinguishes each key is
exponential in the maximum key length, i0e., O(2 exp M),
where Ivl is the maximum key length. There are (2 exp M)
possible combinations of letter positions to choose from,
and each time we consider one of the possible combinations
we must ensure that none of the words have the same set of
chosen letters. This calculation adds a cost factor of (l~I
exp 2)/2 (where l~I is the number of keys), giving us

O((N exp 2) ~ (2 exp lvl)).

This selection process is clearly an expensive addition to
any of our algorithms and might be better left to the
specification of the user. In either case, there is
certainly some set of positions whichdistinguishes each
key (if we take into account the ordering of the letters),
ensuring that we can place all the keys in the hash table.

Ne now give an informal outline of this modified
version of Cichelli's algorithm.

ALGORITHM 1:

Step 1~ sort the keys into ascending order, by length,
in order to partition the set of keys into
subsets of keys which share the same
length. Nith each of these subsets do the
following steps,

Step 2.* choose the smallest set of letter positions such
that no two keys of the same subset have
the same set of Istters in the chosen
positions.

Step 3** Employ Cichelli's two ordering strategies, with
Slingerland and Naugh's refinement, to
produce an (approximately) optimal
ordering of the keys and, therefore, of
the letters which occur in chosen
positions.

Step 4.* make the upper bound of the range of associated
values equal to the number of keys in the
current subset. The lower bound of this
range is zero for every subset.

Step 5.* use Cichelli's backtracking procedure to place
each key of the current subset in the
subrange of the hash table defined by
[offset..(p~m)], where each offset is the
offset for the current subset of keys, p
is the number of chosen positions, and m
is the upper bound of the range of
associated letter values.

Step 6~ i f any unprocessed subsets remain, adjust the
offset of the next subset.* initialise the
offset to the number of keys which have
already been placed in the hash table, say
n, then find the f i rst open position r, r
>= n. This is the new offset for the next
subset..

Step 7~ i f any unprocessed subsets remain, return to
step2| otherwise all keys have been placed
in the hash table and the algorithm
terminates.

I f p letter positions are chosen for the subset of
keys of length i, then the hash value is of the form~

hash value = offset(i) +
assoc value(i, key(Ist selected letter pos) +
assoc value(i, key(2nd selected letter pos) +

assoc value(i, key(pth selected letter pos)

For each key length a record is kept of the offset, the
selected letter positions, and the associated letter
values.

Algorithm I wil l produce the maximum cost reduction in
a situation where the set of keys is partitioned by length
into several subsets, each of a relatively small size. This
algorithm's complexity is now dominated by the size of its
largest subset, rather than by the cardinality of the set
of keys as a whole; the minimum size of the largest subset
occurs when the keys are most evenly distributed by length.
Among the 200 most frequently-occurring ~.nglish words, 80%
have lengths of 3, 4, or 5. The largest of these subsets is
words of length 4, containing about one third of the words
in this rank. The maximum word length in the rank is 9.

Although our experimental results are inconclusive
thus far for this algorithm, we expect that i t wil l be no
more than a factor of S (the number of different word
lengths which occur in a set of keys) faster than
Cichelli's original algorithm. This represents a
significant improvement but not enough to allow large sets
of keys (500-10.00) to be accommodated.

This algorithm generalises the process of choosing
letter positions to searching for a minimal set of letter
positions which will distinguish all keys - a maximally

70

independent set of letters. For keys of only one letter,
only one position is used. Keys of two letters wil l often
need to use both letters, etc. This problem reduction
approach requires additional storage for indexing tables
which indicate letters used in associated value
computation. The cost to maintain this information is
bounded by O(l~I~M) storage locations for M letter positions
used in the hash function and l~ keys.

Associated value assignments need to be made for each
length subset of hash keys. I f we have S subsets~ the
increase in storage allocations wil l be S.26.

Two related difficulties in Cichelli's algorithm are
eliminated with this f i rst algorithm, Keys such as 'his'
and 'has' would never be permitted to have 'h' as the key's
f irst selected letter and 's' as the key's last selected
letter, since their key lengths are the same (this would
also be true of 'label' and 'level'). Also, a key such as
'loop' could be kept distinct from a key such as *pool' (as
could 'on' and 'no') through the use of a constant
multiplier for the key's last selected letter position (see
below), or by maintaining a separate vector of associated
letter values for each position.

2.2. Almost-Minimal Perfect Hash Functions

In practise, almost-minimal perfect hash functions
compare favourably with minimmal perfect hash functions. An
almost-minimal perfect hash function is one which leaves no
more than 20°4 of the hash table locations unused. The next
algorithm searches effectively for almost-minimal perfect
hash functions which prove to be particularly well-suited
for application to the natural language lexicon.

The essential part of the problem of finding a perfect
hash function is choosing a method of assigning associated
values to symbols of the alphabet. To arrive at a perfect
hash function, the assignment should be done efficiently
and should not lead to collisions,

As a simple example, consider the following assignment
of associated values. The symbols of the alphabet A, B,
, , Z are assigned the values 1, 2, . . , 26 respectively.
The hash function applied to the word 'program', for
example, returns

hash value = length('program') + av('p') + av('m')
= 7+16+13 = 36

I t is clear that i f the word 'program' appears in a set of
less than 30 keys and this hash function is used, then the
hash table cannot be minimal or even almost-minimal, by our
standards. ~Iote also that there are many combinations of
associated values and word length which give us a hash
value of 36: an 8 letter word whose f i rst and last letters
are 'n't or a 4 letter word whose f i rst letter is 'r ' and
last letter is 'n', for instance. We are led to the
conclusion that a randomly chosen simple assignment of a
series of distinct values to letters wil l not generally
provide a good solution to our problem.

We have investigated some natural-series which produce
distinct values and whose elements, when added, produce
distinct sums. One such series is the following:

F(1) = 0

F{2) = m
F(3) = 3m

F(n) = 2*F(n-1) + F(n-2), n>3

The series is 0, m, 3m, 7m, 17m, 41m, I f we
choose m to be the length of the longest word and assign
the values to letters in decreasing order of their
frequencies of occurrence in the l is t of keys, we obtain
all desired distinct values. This assignment method ensures
that all pairwise sums of associated values are distinct
as well. The difficulty in assigning associated values in
this way is that the magnitude of the values rises very
rapidly, even i f the multiplicative factor m is small; with
re=l, the tenth most frequent letter wil l get a value of
1731, which obviously defeats our purpose of producing
almost-minimal sized hash tables.

Series of this nature are useful, however, in limiting
the magnitude of associated values. Small hash values are
convenient and lead to minimality. In order to keep hash
values as small as possible, we must allow letters to share
associated values. This possible duplication of values
reduces the advantage of assignment of series of distinct
associated values, since we again have to check for
conflicts with each new vector of assigned values.
l~evertheless, because we have assigned the smallest
limiting values to the most frequently-occurring letters
(those which are most likely to be involved in collisions),
hash values do tend to remain small in the f irst 85-90% of
the l ist of keys. After this there usually appears a series
of increasingly large gaps which reduce the loading factor
to about 42% for 200 keys.

Two series which produce distinct pairwise sums have
been used in an implementation of Algorithm 2 [outlined
below] based on the preceding ideas. The f i rst series
utilised is the powers of 2, which has the property that
the sums of any two different sets of distinct members of
the series are different. The series of this type which
grows most slowly is clearly the one with base 2.*

F(1) = 2 exp 0

F(2)=2exp 1

F(n) = 2 * F(n-1)

Another candidate series is the Fibonacci series,
suitably modified. We add one to the term at each step in
the production of the series, thus:

G(1) = I
G(2) = 2

G(n) = G(n-2) + Gin-l l + 1

There are no pairwise sums here, and this series grows
slower than the powers of 2.

The algorithm which uses one of these series to assign
limiting values can be described (informally) as follows:

ALGORITHM 2:

Step I: initialise all associated values to the temporary
values computed according to some natural
series and assign them to the letters with
the highest frequency of occurrence, thus
obtaining the lowest values. Apply step2 to
each key, Ki (0<i<# of keys), in turn.

Step 2: i f Ki(1), the f i rst character, has been 'tried'
already, see whether Ki(length Ki), the last
character, has been 'tried'. I f both have
been tried, proceed to the next key,

71

Step 3,' for an 'untried' character, vary the associated
value from 0 to the temporary value in
increments of I until no collision occurs in
the hash values. [A boolean Function, CHECK,
makes the necessary alterations of the hash
values of the key l ist and then makes an
exhaustive search for collisions].

Step 4,' once a letter has been assigned an associated
value, mark this letter 'tried'.

Algorithm 2 is not a backtracking algorithm in the
classical sense, but an intelligently controlled
ennumerative one. Since no associated value can exceed the
temporary value given to the letter in step1 (because the
temporary values are guaranteed to avoid collisions!),
there is an upper bound to the search time. I l l we are
using powers of 2 as temporary values, adding one letter to
the set of those which wil l be assigned values doubles the
number of possible combinations; this upper bound may
become quite large]. The time complexity of the CHECK
Function is O(N exp 2) because we need to compare each key
against all the rest. Each time we try a new assignment we
invoke CHECK, so i f s letters of the alphabet occur in
selected positions then the Function wil l be called, in the
worst case, the sum over all i, 0{i<s+l, of F(i). I f we add
a multiplicative Factor m, such as the word length, the
worst case cost is multiplied by m. The overall time
complexity, in the worst case, of the execution of step3 is
O((N exp 2)*m*SUM(F(i),'0<i<s+l)). Using the powers of 2,
the third Factor is no greater than 2*(2 exp 26) = 2 exp
27, about 128 million.

In practise, this algorithm tends to find a solution
long before the worst case occurs; when the set of keys is
small enough we often get an almost-minimal hash Function.
Nhen the number of keys approaches 200, the loading Factor
tends to fal l to about 50% or less.

A third algorithm has been written to produce almost
minimal hash Functions quickly, enabling us to apply the
method to some large sets (>500) of keys with good results.

Algorithm 3 assigns a set of associated values for
each selected letter position. In effect we distinguish the
occurrence of, say, an 'e' in the First position from one
in the third position. Words such as 'on' and 'no', 'was'
and 'saw', and 'live' and 'evil ' are now easily
distinguished. I f we have p-selected letter positions, then
the hash Function has the Form,'

hash value = assoc value of letter in Ist selected pos'n +
assoc value of letter in 2nd selected pos'n +

assoc value of letter in p-th selected pos'n

This algorithm utilises a pre-processor which First
orders the keys by the product of the Frequencies of
letters in selected positions. The words are then reordered
as in previous algorithms so that words which share letters
are grouped together. Any word which has a letter in a
selected position which occurs in that word only wil l be
one of the last keys added to the hash table; this unique
letter occurrence makes i t possible to place this key in
any open location in the hash table without disturbing the
values of the remaining letters which might affect the hash
values of other keys.

Keys are placed in the hash table in groups. Groups
have two properties: (i) one letter is common to all keys
in the group; and (ii) all other letters which occur in the

group have already been assigned values. Grouping the words
is determined as part of the preprocessing. Ne may find
that some pair of words in a group have equal sums of
associated values previously assigned to the respective
sets of letters which the words do not have in common. Nhen
this situation occurs, the value of the letter held in
common cannot affect the existance of a collision, so we
must change some previously assigned associated value(s).
In order to minimise the number of letters (and keys) which
need to be re-considered, we choose to change the value of
the letter which is in only one of the two words and most
recently was assigned a value. That letter's group and all
that were added after i t are removed from the hash table,
and placed at the head of the l ist of groups not yet added.
Ne then continue adding groups to the hash table until all
the keys are included. Clearly, the last keys added, those
with unique letter occurrences, can be placed anywhere in
the table beyond the sum of letters which already have
values. These keys tend to Fill gaps in the hash table,
promoting the minimality of the size of the hash table.

A brief outline of the algorithm Follows,'

ALGORITHM 3:

Step 1: the user is prompted to select a set of letter
positions.

Step 2: check for conflicts (two keys having the same
characteristics). I f conflict occurs, continue
with step 1; otherwise continue with step3.

Step 3: order the keys so that the most frequent letters
occur earliest in the l ist of keys. Nords
with a unique letter occurrence in some
position are placed at the end of the l ist.

Step 4t add the next group of keys to the hash table by
varying the value of any letter which hasn't
occurred before. I f an unresolvable conflict
occurs, return to an earlier stage in the
calculation by removing conflicting groups
from the hash table. I f no groups remain, stop;
otherwise performs step4 again.

The APL implementation of this algorithm, running
under the Michigan Terminal System [MTS] on an IBM 4341
computer, has produced excellent results.

3. Experimental Results

Ne now illustrate some basic programming results. The
programs were originally written in UCSD Pascal and run on
a North Star Horizon I I micro-computer. Since we decided to
try additional experiments in APL, we translated the
programs to APL and Pascal/UBC and ran them on an IBM 434]
computer under the MTS operating system.

Ne First present the results of using Cichelli's
algorithm, algorithm 0, and our algorithm 2 on several test
cases, including those given by Cichelli. These algorithms
are both implemented in Pascal programs. The Final pages of
our examples illustrate an interactive version of algorithm
3 with most of the variations mentioned in the text
incorporated. The outpuut of algorithm 3 was produced by an
AFL program.

72

ALGORITHM 0

StartinS at 14:50:48 on FEB 19, 1981
Solvin~ for I solution
Placin~ 31 words

FIND PERFECT HASH FUNCTIONS FOR:
THIRTY-ONE MOST FREQUENT WORDS
.

THE, OF, AND, TO, A, IN, IT, THAT, I, IS,
FOR, BE, WAS, YOU, AS, WITH, HE, HAVE,
ON, BY, NOT, AT, THIS, ARE, WE, HIS, BUT,
THEY, ALL, WILL, OR

NO CONFLICTS
Startin~ search at 14:50:49

FIRST SECOND
HASH ASSOC ASSOC

KEY VALUE VALUE VALUE

I I I 0 0
2 IT 2 0 0
3 YOU 3 0 0
4 THAT 4 0 0
5 AT 5 3 0
6 IS 6 0 4
7 A 7 3 3
8 THIS 8 0 4
? AS 9 3 4

10 THE 10 0 7
I I TO 11 0 9
12 HIS 12 5 4
13 ARE 13 3 7
14 HE 14 5 7
15 FROM 15 9 2
16 HAVE 16 5 7
17 BY 17 15 0
18 BUT 18 15 0
19 AND 19 3 13
20 OF 20 9 9
21 HAD 21 5 13
22 IN 22 0 20
23 NOT 23 20 0
24 BE 24 15 7
25 WAS 25 18 4
26 HER 26 5 IB
27 WITH 27 18 5
28 WHICH 28 18 5
29 OR 29 9 18
30 FOR 30 9 18
31 OF 31 9 20

PRINTING AT 14:51:06 FEB 19, 1981
addword called 7264 times.
tr~ called 23467 times.

16775 milliseconds of CPU time elapsed.

ALGORITHM 2

THIRTY-ONE MOST FREQUENT WORDS
.

THE, OF, AND, TO, A, IN, IT, THAT, I , IS, FOR,
BE, WAS, YOU, AS, WITH, HE, HAVE, ON, BY, NOT,
AT, THIS, ARE, WE, HIS, BUT, THEY, ALL, WILL,
OR

Callin~ ' t r y ' at 19:43:04 on FEB 12, 1981
Finished at 19:43:06

2781 milliseconds of CPU time elapsed.

FIRST SECOND
HASH ASSOC ASSOC

KEY VALUE VALUE VALUE

l I 1 0 0

2 IT 2 0 0
3 THAT 4 0 0
4 AT 5 3 0
5 IS 6 0 4
6A 7 3 3
7 THIS 8 0 4
8 AS 9 3 4
9 THE I0 0 7

I0 TO i i 0 9
11 HIS 12 5 4
12 ARE 13 3 7
13 HE 14 5 7
14 OF 15 9 4
15 HAVE 16 5 7
16 IN 17 0 15
17 NOT 18 15 0
18 WAS 19 12 4
19 FROM 20 4 12
20 WITH 21 12 5
21 WHICH 22 12 5
22 FOR 23 4 16
23 HER 24 5 16
24 BUT 25 22 0
25 ON 26 9 15
26 OR 27 9 16
27 BY 28 22 4
28 YOU 29 4 22
29 AND 30 3 24
30 BE 31 22 7
31 HAD 32 5 24

73

ALGORITHM 0

Starting at 15:31129 on FEB 20, 1981
Solvin~ for I solution
Placing 36 words

FIND PERFECT HASH FUNCTIONS FORt
THIRTY-SIX PASCAL RESERVED WORDS
.

PROGRAM, FUNCTION, LABEL, UNTIL, BEGIN,
FOR, NIL, IF, ARRAY, IN, VAR, REPEAT, WITH,
PROCEDURE, THEN, NOT, PACKED, RECORD,
FILE, MOO, OF, OR, SET, AND, DIV, CONST,
WHILE, TYPE, OTHERWISE, TO, GOTO, DOWNTO,
CASE, ELSE, END, DO

NO CONFLICTS
Starting search at 15:31:30

FIRST SECOND
HASH ASSOC ASSOC

KEY VALUE VALUE VALUE

I DO 2 0 0
2 END 3 0 0
3 ELSE 4 0 0
4 TO 5 3 0
5 DOWNTO 6 0 0
6 TYPE 7 3 0
7 WHILE 8 3 0
8 OTHERWISE 9 0 0
9 OF 10 0 B

I0 OR 11 0 9
11 FILE 12 8 0
12 NOT 13 7 3
13 THEN 14 3 7
14 RECORD 15 9 0
15 PACKED 16 I0 0
16 CASE 17 13 0
17 REPEAT 18 9 3
18 PROCEDURE 19 10 0
19 FOR 20 8 9
20 CONST 21 13 3
21 AND 22 19 0
22 FUNCTION 23 8 7
23 MOO 24 21 0
24 NIL 25 7 15
25 GOTO 26 22 0
26 DIV 27 0 24
27 IN 28 19 7
28 IF 29 19 8
29 SET 30 24 3
30 BEGIN 31 19 7
31 UNTIL 32 12 15
32 WITH 33 3 26
33 ARRAY 34 19 I0
34 LABEL 35 15 15
35 VAR 36 24 9
36 PROGRAM 38 10 21

PRINTING AT 15~31131 FEB 20, 1981
addword called 1392 times.
tr~ called 4456 times.
1625 milliseconds of CPU time elapsed.

ALGORITHM 2

THIRTY-SIX PASCAL RESERVED WORDS

PROGRAM, FUNCTION, LABEL, UNTIL, BEGIN,
FOR, NIL, IF, ARRAY, IN, VAR, REPEAT, WITH,
PROCEDURE, THEN, NOT, PACKED, RECORD, FILE,
MOD, OF, DR, SET, AND, DIV, CONST, WHILE,
TYPE, OTHERWISE, TO, GOTO, DOWNTO, CASE,
ELSE, END, DO

Calling ' t r y ' at 12:08=29 on FEB 20, 1981
Finished at 12=08:51
21103 milliseconds of CPU time elapsed.

FIRST SECOND
HASH ASSOC ASSOC

KEY VALUE VALUE VALUE

1 DO 2 0 0
2 END 3 0 0
3 ELSE 4 0 0
4 TO 5 3 0
5 DOWNTO 6 0 0
6 TYPE 7 3 0
7 OR 8 0 6
8 OTHERWISE 9 0 0
9 NOT I0 4 3

I0 THEN I I 3 4
I I RECORD 12 6 0
12 NIL 13 4 6
13 OF 14 0 12
14 REPEAT 15 6 3
15 FILE 16 12 0
16 LABEL 17 6 6
17 WHILE 18 13 0
18 PACKED 19 13 0
19 AND 20 17 0
20 FOR 21 12 6
21 PROCEDURE 22 13 0
22 CASE 23 19 0
23 FUNCTION 24 12 4
24 MOD 25 22 0
25 IN 26 20 4
26 CONST 27 19 3
27 GOTO 28 24 0
28 DIV 29 0 26
29 ARRAY 30 17 8
30 UNTIL 31 20 6
31 SET 32 26 3
32 WITH 33 13 16
33 IF 34 20 12
34 UAR 35 26 6
35 BEGIN 36 27 4
36 PROGRAM 42 13 22

74

ALGORITHM 3 ALGORITHM 2

SEVENTY-FIVE PASCAL KEY WORDS
AND RESERVED WORDS

.

MASHING STARTED AT 1981 5 19 15 44 53 139
MASHING FINISHED AT 1981 5 19 15 45 12 114
CPU SECONDS USED IN MASH IS 1.936
NUMBER OF TIMES THROUGH MASH MAIN LOOP IS 66

LETTER POSITIONS USED~ I 2 4

LETTER VALUES

LETTER POSN I POSN 2 POSN 4
.

'A' 18 15 22
'B' 49 25 0
'C' 3 0 17
'D' 12 0 3
'E' 0 0 0
'F' 11 2 27
'G' 40 0 58
'H' 0 21 25
' I ' 19 24 9
'K' 0 0 37
'L' 28 67 0
'M' 31 0 0
'N' 31 11 1
'0' 9 6 4
'P' 1 0 33
'O' 0 48 0

'R' 0 11 1
'S ' 3 0 20
'T ' 1 60 9
"U" 35 17 40
'V' 51 0 28
'W' 20 0 35
'X' 0 32 0
'Y' 0 67 0

HASH TABLE

4 REAL 29 CHAR
5 RESET 30 PUT
6 REPEAT 31 SIN
7 READ 32 COS
8 REWRITE 33 IN
9 READLN 34 CONST

i0 RECORD 35 AND
11EOLN 36 EOF
12 ROUND 37 INTEGER
13 TO 38 PROCEDURE
14 TEXT 39 FILE
15 SET 40 OF
16 TRUE 41 SUCC
17 END 42 LN
IB TRUNC 43 MOO
19 PRED 44 ARCTAN
20 PAGE 45 WRITE
21 FOR 46 WHILE
22 CASE 47 WRITELN
23 OR 48 LABEL
24 DO 49 NOT
25 DOWNTO 50 IF
26 ORD 51 FALSE
27 THEN 52 GET
28 CHR 53 FUNCTION

54 GOTO
55 SQR
56 ARRAY
57 PACK
58 NIL
59 PACKED
60 UNTIL
61MAXINT
62 BOOLEAN
63 BEGIN
64 SQRT
65 OUTPUT
66 ABS
67 DIV
68 EXP
69 NEW
70 VAR
71 ELSE
72 TYPE
73 WITH
74 UNPACK
75 INPUT
76 DISPOSE
77 PROGRAM
78 OTHERWISE

TWO HUNDRED MOST FREQUENT ENGLISH WORDS
.

Callin~ ' t r y ' at 20:36:43 on FEB 19, 1981
Finished at 22t54:19

8255568 milliseconds of CPU time elapsed.

FIRST SECOND
HASH ABSOC ASSOC

KEY VALUE VALUE VALUE

I JUST 6 0 2
2 THAT 8 2 2
3 THOUGHT ii 2 2
4 THE 14 2 9
5 TIME 15 2 9
6 THERE 16 2 9
7 SET 18 13 2
8 THIS 19 2 13
9 TIMES 20 2 13
10 THINGS 21 2 13
11 SHE 25 13 9
12 SOME 26 13 9
13 SINCE 27 13 9
14 DONT 28 22 2
15 DIFFERENT 33 22 2
16 END 34 9 22
17 SOMETIMES 35 13 13
18 SAID 39 13 22
19 SOUND 40 13 22
20 SHOULD 41 13 22
21 AT 42 38 2
22 ABOUT 45 38 2
23 ALMOST 46 38 2
24 DID 47 22 22
25 THEIR 48 2 41
26 ARE 50 38 9
27 TOGETHER 51 2 41
28 ABOVE 52 38 9
29 AS 53 38 13
30 EVER 54 9 41
31 ALWAYS 57 38 13
32 ANIMALS 58 38 13
33 NOT 60 55 2
34 THEN 61 2 55
35 NIGHT 62 55 2
36 AND 63 38 22
37 ASKED 65 38 22
38 AROUND 66 38 22
39 READ 67 41 22
40 EVEN 68 9 55
41 SOON 72 13 55
42 A 77 38 38
43 DOWN 81 22 55
44 AIR 82 38 41
45 AFTER 84 38 41

i J

192 MAY 380 220 157
193 MANY 381 220 157
194 FOLLOWING 404 214 181
195 YOU 405 157 245
196 UNTIL 428 245 178
197 FROM 438 214 220
198 IF 451 235 214
199 I 471 235 235
200 UP 47b 245 229

75

ALGORITHM 3

FIVE HUNDRED MOST FREQUENT ENGLISH WORDS
.

MASHING STARTED AT 1981 5 19 14 19 55 987
MASHING FINISHED AT 1981 5 19 14 20 30 147
CPU SECONDS USED IN LASH IS 23.288
NUMBER OF TIMES THROUGH LASH MAIN LOOP IS 112

LETTER POSITIONS USED~ 1 2 3 4 I0

LETTER VALUES

LETTER POSN 1 POSN 2 POSN 3 POSN 4 POSN i0
.

'A' 34 11 50 365 40
'B' 7 18 1 1 0
'C' I 7 99 153 20
'D' 15 0 107 122 47
'E' 98 0 0 0 0
'F' 0 125 23 B7 223
'G' 91 100 2 243 59
'H' 3 8 51 324 106
' I ' 229 7 166 177 1
'J ' 0 0 0 6 0
'K' 368 0 147 72 311
'L' 39 113 127 32 188
'M' 4 61 8 184 264
'N' 21 45 11 18 5
' 0 ' 152 1 1 210 201
'P' 60 230 24 301 2
' g ' 59 0 0 0 0
'R' 190 64 1 II 54
'S' 0 254 2 121 7
'T' i 161 7 26 17
'U' 71 14 204 251 0
'V' 87 34B II0 191 0
'g' 2 28 17B ? 345
' X ' 0 2 26 7 0
'Y ' 198 144 203 286 9
' " 0 0 2 132 0

HASH TABLE

3 SEE 4 WE 5 HE 6 ME
7 WERE S HERE 9 BE 10 MORE

11 SHE 12 THE 13 SOME 14 COME

GOB I'M 689 IF 696 INTO 703 ALWAYS
768 OPINION 771 KNEW 772 KNOW 821 ASK

4. Application to l~Iatural Language Lexicon Design

Retrieval methods usually assume equal likelihood of
retrieval for each data item (Knuth, 1973)0 I t is well
documented in the literature of lexicography (Dewey, 1923;
Carroll et a l , 1971) that this is not the case for the
English language (or, presumably, for any natural
language). I~le propose to make use of information about the
frequency of occurrence of English words and a judicious
mix of common search and hash encoding techniques to
provide an efficient organisational strategy for a natural
language lexicon.

I f the dictionary is formed by putting properties on
LISP atoms (as is done in many natural language systems),
the entire search is performed by a LISP system. Most
implementations of LISP (Allen, 1978, pp 275-277) use an
'object l i s t ' to access atoms, usually implemented as hash
buckets. A built-in general purpose hash function is
provided which distributes the hash values of the complete
set of keys in the dictionary (hopefully equally) among the
hash buckets, each of which is searched sequentially. The
access time is therefore dependent on the number of buckets
and on bucket size. [The retrieval time is dependent on the
actual distribution of the keys among the buckets. For any
hash function, there exist some set of keys which wil l
produce very uneven distributions. In the worst case, all
keys wil l have the same hash value, so the average cost of
a successful search would be N/2| for an unsuccessful
search, the cost would be H (where l~ is the number of
keys)].

In addition to this search for the atom name, the
property l is t must be scanned for dictionary properties.
I f , for the majority of items in the lexicon, this is the
only property on the property l ist, the time required for
any lexical access is approximately equal to the hash
encoding scheme time. Comparatively, the number of words
with many properties remains insignificant and wil l not be
considered.

Any desirable search technique can be imposed on an
explicitly-stored dictionary. When we attempt to organise
the lexicon in a way that minimises retrieval time, many
factors affect our choices, such as the size of the lexicon
and the need for secondary storage. Some design criteria,
however, will improve the access time for any linear search
algorithm of a natural language lexicon. One such design
feature is to order the dictionary according to the
relative frequency of the use of the letters in words
(Cercone and Mercer, 1980).

The proposal we wil l explore here is to divide the
dictionary into two or more parts to form dictionary
hierarchies. This feature is most interesting when one
considers the very high frequency of use of a very small
number of words, but i t is also important when one needs to
consider how to divide a dictionary over different storage
media. For example, 732 items comprise 75% of the words
used in representative text. A possible three-level
hierarchy would be 64 items that account for 50% of the
words in the text (see T~hle 4.1), 668 items that comprise
another 25% and the remainder that provide the final 25%. A
hash into the f i rst level of 64 words followed by a binary
search of the second level (which on the average would
require about 9 accesses), followed by a trie search of the
third level would provide a very efficient search.

76

I I REL.] I
I HORD I FREQ. I TOTAL I
I I - - - - I I

11E 17.3101 7.310l
OF 13.~8111.3081
P~D 13.280114.5881
TO 12.924117.5121
A 12.120119.6321
IN 12,116121,7481
IT II.q88123.2361
THaT 11.367124,&031
I 11.236125.8391
IS 11.224127,0631

I ~ L . I I
HORD IFREO.I TOTALI

. . . . I - - - I - - - - - I
FOR 11.035128.0981
BE 10.956129.0591
HAS 10.850129.90ql
YOU 10.808130.7121
AS I 0.782131.49~11
gTIH 10.727132.2211
HE 10.687132.9081

10.658133,5~1
Og 10.643134.2091
BY 10.600134.8091
HOT 10.589135.3981
AT 10.585135.9831
THIS 10.572136.5551
/~E 10.599137.10ql
HE I 0.537137,6411
HIS 10.517138.1581

10.50ql38.~21
THEY 10.'195139.1571
ALL 10.467139.6241
g]lJ_ 10,464140.0981
OR 10.458140,5461
~CH10.459141.0001

10,433141.4331
10,4141'tl.8471

HAS 10.390 i42.237i
ONE 10.389142,6261
OUR 10.357143.9831

I I REL.I I
i NORD IFREQ.I TOTALI
I----- I I ~ - I

AN I 0,330 H3.313t
10o3291q3.UI21

BY 10.329143.9711
THEJEI 0.3291'H.300 I
NO 10.3211~.6211
TI¢~I 0.31914'1.9't0 I
IERE 10.307145.2471
SO 10,300145.5471

I0.285145,8321
YEIR 10.283146,1151
C~ 10.277146.3921
HOULDIO,267146.6591
IT 10,2~1'S.9221
TH~ 10.262147.18ql
gi~T 10.260147,4441
HE 10.257147.7011
gltO 10.246147.9491
DO 10.239148.1881
HI EH 10.237148.4251
HER I 0.234148.~591
I]HE 10.232148,8911

10.217149,1081
AHY 10,210149,3181
HORE 10.210 H9.5281
HOg 10,210149,7:381
UP 10,2071~,9~1
OUT 10.206150.1511

Table 4.1. The 64 Most F requent l y Used Nords.
(adapted from Dewey, 1923)

Lexicon storage is as crucial an issue as the
retrieval of lexical information. Common structure sharing
and morphological analysis contribute towards efficient
space utilisation; certain dialects of LISP use various
techniques, such as CDR-encoding, to reduce the
representational overhead. The dictionary represented as a
trie (Knuth, 1973) requires less space because letters are
not repeated unnecessarily in successive words. Some
representational overhead is incurred, however, by the
required pointers.

The previous discussion has considered how to minimise
the space required by the lexicon. Ne now present a short
synopsis of some typical lexicon designs. For the purposes
of this discussion we wil l consider lexicons that contain
large quantities of information in three representative
sizes, (i) small - 200 entries or less; (ii) medium - 2000
to 4000 entries; and (iii) large - 30,000 to 60,000
entries. Typically, a small lexicon gains l i t t le From
complex organisation schemes. Our implementation of
Algorithm 3, however, can compute almost-minimal hash
functions for most lexicons of small size. One drawback is
that we have to store 26,S associated values when S letter
positions are selected, making this table's size the same
order of magnitude as the dictionary itself. Of course,
search time would be cut considerably, so the storage
overhead might st i l l be found acceptable.

Medium size lexicons need to be analysed differently;
i f the dictionary can f i t in random access memory, a binary
search would provide efficient access of items,
supplemented by hash encoding into a mini-dictionary of the
most common words. There is no space advantage using a trie
structure because the overhead in associated pointers is
high and there is l i t t le common spelling among so Few
words. IF the lexicon cannot Fit into memory, i t is

appropriate to treat the medium size lexicon as a large
lexicon.

Large lexicons are easier to analyse because they
typically require secondary storage media. Our major
concern in this case is to ensure that the number of
retrievals from secondary memory is minimised. The
favourable results we have obtained from Algorithm 3 lead
us to consider including the 732 most frequent words in a
single almost-minimal hash table, giving us one-probe
retrieval in 75% of the cases. The remaining, say, 50,000
words could be mapped by a second hash function into 50
subsets of about 1000 words each. [In order to preserve the
machine-independence of the algorithm, this second hash
function could be based on the ordinal positions of letters
in the alphabet rather than on the machine character code].
These could be stored separately in secondary memory. For
each of these subsets, compute an almost-minimal perfect
hash function, storing the associated values in the same
secondary memory location as the lexical information
itself. I f the key we are searching for is not in the table
of most-frequent words, then this scheme would perform a
hash to select the proper second-level table From a
secondary storage medium; this table would then be searched
using its own perfect hash Function. This organisation
would allow us to retrieve any key with three hash
calculations and one probe of secondary memory.

5. Concluding Remarks

He have tried ordering strategies other than the ones
we have reported above, which were found to be inferior to
Cichelli's original method. These include ordering the keys
in terms of their length, which resulted in a hash table
which did not meet the minimality criteria, and ordering
the keys by increasing frequency of the letters (rather
than by decreasing frequencies).

Discussion with Professor Krishnamoorthy of Rensselaer
regarding the theoretical limitations of Algorithm 2
resulted in the following investigation. Consider the
subproblem in which all the keys have the same length,
hence the hash function is simplified to the addition of
two associated values. I f we take the set {AT, IT, IN, ON,
TO, AN} and represent i t by the undirected graph of Figure
5.1 below, the problem reduces to the assignment of integer
weights to the nodes of the graph, such that the weights of
the edges (we define the weight of an edge(u,v) as the
weight of u plus the weight of v) are all distinct. Ne
tried Algorithm 2 for the commplete graph illustrated in
Figure 5.2.

T

\ [/
Figure 5.1. Figure 5.2.

Ne ran the program for the words (AA, AB, AC, BB, BCt CC}.
Here we found a limitation of our method. For a complete
graph with ten nodes, viz., For the keys Formed from {A, B,
C, D, E, F, G, H, I, 3}, our implementation of Algorithm 2

77

returned { I , 2, 4, 8, 13, 21, 31, 45, 66, 81} respectively
as the associated values. But the minimum set is given by
{0, 1, 6, 10, 23, 26, 34, 41, 53, 553. This sequence is
called a B2 sequence and has been exhaustively studies in
Mumber Theory. The problem o~ finding the absolute minimum
(or optimum) sequence may well prove NP-complete but this
proof appears to be a non-trivial problem.

Ne are currently undertaking a major comprehensive
study oF these perfect hashing schemes with all the
variations we mentioned and a number oF other variations we
are Formulating now. Ne anticipate the modularised Pascal
and APL programs, which are written, will be available For
distribution for all those interested by Spring, 1982.

Acknowledgements

We wish to thank Venkatakasi Kurnala and Paliath
Narendran oF Rensselaer Polytechnic Institute For their
work on Algorithm 2. Thanks are also due Josie Backhouse
For reading an earlier draft oF this paper. This research
was supported by the National Science and Engineering
Research Council oF Canada under Operating Grant no. A4309
and by the OFFice oF the Academic Vice-President, Simon
Fraser University.

ReFerences

Allen, J . (1978), THE ANATOMY OF LISP, McGraw-Hi l l ,
New York.

Carroll, J., Davies, P., and Richman, B. (1971). THE
AMERICAN HERITAGE NORD FREQUENCY BOOK,
American Heritage Publishing Company, Inc., New York.

Cercone, N, (1975). "Representing Natural Language in
Extended Semantic Networks", PhD Thesis, Technical
Report TR75-1 I, Department of Computing Science,
University oF Alberta, Edmonton, Alberta.

Cercene, N., and Mercer, R. (1980). "Design of Lexicons in
Some Natural Language Systems", ALLC Journal, I, pp
37-51.

Cichelli, R. (1980). "Minimal Perfect Hash Functions Made
Simple", Communications oF the ACM, 23, pp 17-19.

Cichelli, R. (1980). Author's response to technical
correspondance, Communications oF the ACM, 23, pp 729.

Dewey, G. (1923). RELATIV FREQUENCY OF ENGLISH
SPEECH SOUNDS. Harvard University Press,
Cambridge, Mass .

Graham, R. (1980). "On Additive Bases and Harmmonious
Graphs", SIAM Journal on Algebra and Discrete Methods,
1 (4), pp 382-404.

Halberstam and Roth. (1966). SEQUUENCES. volume I,
OxFord University Press.

Knuth, D. (1973). THE ART OF COMPUTER PROGRAMMING,
volume 3~ Sorting and Searching, Addison Wesley,
I~ading, Mass.

Moon, D. (1974), MACLISP REFERENCE MANUAL, Project
MAC, MIT, Cambridge't Mass.

Morris, R. (1968). "Scatter Storage Techniques",
Communications oF the ACM, 11, pp 38-44.

Schank, R., Goldman, No, Rieger, C., and Riesbeck, C.
(1973)0 "MARGIE= Memory Analysis, Response Generation
and InFerence in English", Proceedings oF IJCAI3, pp
255-261.

Schwartz, E. (1963). "A Dictionary For Minimum Redundancy
Encoding", ~Tournal oF the ACM, 10, pp 413-439.

Nilks, Y. (1973). "PreFerence Semantics", StanFord AI
Project, memo AIM-206, StanFord University, StanFord,
CaliFornia.

Ninograd, T. (1972). UNDERSTANDIMG NATURAL
LANGUAGE. Academic Press, l~Iew York.

Noods, N., Kaplan, R°, and Nash-Nebber, B. (1972). "The
Lunar Sciences Natural Language InFormation System=
Final Report", Bolt, Beranek and Newman, Inc.,
Cambridge, Mass.

78

