
Book Reviews Prolog and Natural-Language Analysis

PROLOG AND NATURAL-LANGUAGE ANALYSIS

(CSLI LECTURE NOTES 10)

Fernando C. N. Pereira, and Stuart M. Shieber (SRI
International)

Center for the Study of Language and Information,
Stanford University, Stanford, CA 1987, viii + 260

pP.
Distributed by the University of Chicago Press
ISBN 0-937073-17-2, $28.95 (hb); ISBN 0-937073-18-0,

$13.95 (sb)

Reviewed by
Patrick Saint-Dizier
IRISA-INRIA

I have often met linguists and computational linguists
willing to read a short, simple, and well-documented
textbook about the use of Prolog for natural-language
understanding. I feel that this well-written book mainly
devoted to Prolog and logic grammars to a large extent
meets the challenge. I will here summarize and com-
ment on each chapter, and conclude by pointing out
aspects I would have liked to see included in this
introductory book.

Besides the presentation of concepts and examples,
each chapter contains several exercises left to the
reader and exhaustive bibliographic notes. I only regret
that no answers to the exercises are provided as is
usually the case for textbooks. These exercises are
often nontrivial for the beginner and commented an-
swers would have made them much more attractive and
useful. Another interesting point is the internal struc-
ture of each chapter: two themes (Prolog and logic
grammars) are tackled in a parallel and progressive way.

Chapter 1 is a very short introduction to logic pro=
gramming, Prolog, and natural language. It also includes
a list of prerequisites (which does not constitute a real
constraint for a novice in the area) and some general
historical material about the field and related fields.

Chapter 2 begins with an introduction to Prolog,
viewed as a means to encode knowledge in a declarative
way. The presentation is simple and classical. Section
2.3, about the logic of Prolog, is probably the best
presentation of the topic I have ever seen, apart from
the excellent book The Art of Prolog (Sterling and
Shapiro 1986). To conclude this brief introduction, a
problem section deals with the representation of seman-
tic networks. This chapter ends by the development of
an implementation method for context-free grammars in
Prolog. A trace of the parsing of a short sentence helps
the user to understand how the proof procedure of
Prolog is used as a parsing mechanism.

Chapter 3, entitled "Pure Prolog: Theory and appli-
cation," observes the same structure as the previous
chapter. It first introduces more complex concepts,
techniques, and data-structures of Prolog, illustrated by
typical short programs, most of them belonging to the

classics of the field. Then, more material about formal
aspects of Prolog (e.g., substitutions and unification,
resolution and the semantics of Prolog) is given. Finally,
definite-clause grammars (DCGs) are introduced. They
constitute the basic form of logic grammars from which
several formalisms have been developed, motivated
either by linguistic considerations or by the need of
providing grammar writers with more transparent for-
mulations of grammars. DCGs have themselves partly
emerged from metamorphosis grammars (Colmerauer
1978), which is a general framework to deal with type-0
grammars. Besides a basic implementation of DCGs,
the authors introduce fundamental techniques to build
parsing trees, to deal with PP-attachment and to express
different kinds of agreements.

Chapter 4 is divided into two parts: some very basic
principles for semantic interpretation are given, and
then the syntactic coverage of the grammar given in the
previous chapter is extended. The first section of this
chapter shows how the basic principles of computa-
tional semantics are dealt with in Prolog by means of
logical variables. The authors then focus on quantified
noun phrases and quantifier scoping. Although the
programming techniques given in this latter section are
of much interest, the idea of generating all possible
quantifier scopings without any further refinements
seems to me to be a little too superficial, given the
actual state of the art. Next, the syntactic coverage of
the previous grammar is extended. Of particular interest
is the way filler-gap dependencies are expressed in an
efficient way for simple linguistic constructions. The
technique of difference lists is then introduced to permit
an efficient treatment of those dependencies. The im-
plementation of simple island constraints is also given to
emphasize the relevance of the difference-list tech-
nique. Finally, the problem section addresses grammar
extensions such as noun complements and modifiers.
This chapter is the central part of the book and provides
a good basis for the reader who is willing to write his
own grammar. However, I feel that the semantic-
interpretation section should have been a little more
developed, since I. the main goal of language process-
ing is to understand a sentence or a text via its semantic
representation, and 2. the semantic interpretation of
other constructions like modifiers requires improve-
ments of the basic construction method presented here
and would be worth presenting at this levee The prob-
able reason for this lack of development is that rela-
tively few works have been undertaken in the area of
semantic representation and interpretation Using Pro-
log.

Chapter 5 introduces metalogical facilities offered by
standard Prolog (e.g., built-in predicates like call, cut,
set 03') and then proposes a simple dialogue program.
Chapter 6 is entirely devoted to the construction of
interpreters for DCGs. Interpreters mainly permit one
to circumvent computational problems like left-recur-
sion in grammar rules, implementing parsing strategies

Computational Linguistics, Volume 14, Number 2, June 1988 79

Book Reviews Efficient Parsing for Natural Language

different from the strategy imposed by Prolog, and
partly automating the writing of rules. For example,
arguments having a regular and predictable structure
(parse tree building, logical form construction, etc.) can
be automatically included in grammar rules. Such inter-
preters are written in Prolog and they transform a
Prolog-like program into one that is directly executable.
Fundamental techniques are proposed and illustrated
for DCGs, such as automated construction of proof
trees, interpretation of filler-gap dependencies, partial
execution, and tabular parsing (i.e., chart parsing). The
book ends with annotated sample programs that inte-
grate most of the material presented in the preceding
chapters. The bibliography is relevant and comprehen-
sive, given the aims of the book.

To conclude, I feel that this book includes most of
the material one would wish to see in an introductory
book. By a small number of linguistic concepts and
constructions, the authors present the main techniques
a grammar writer can use in a large number of situa-
tions. There are, however, some points I would have
liked to see included in this book. Very few parsers
directly use the linguistic framework proposed here but
rather are inspired by GPSGs, LFGs, HPSGs, UGs,
etc. Thus it would have been of particular interest to
have guidelines on Prolog techniques useful to such
computational-linguistics frameworks. Some aspects,
like feature percolation and control in GPSGs, are
probably not trivial to deal with.

In spite of these nonessential restrictions, I feel that
this book should be read by everyone in the field having
a minimum interest in Prolog. This very convincing
book also suggests the reading of more complex publi-
cations in the field like Dahl and St.-Dizier (1985, 1988)
and JLP (1986).

REFERENCES

Colmerauer, A. 1978. Metamorphosis Grammars. In Lecture Notes in
Computer Science, 63: 133-189, L. Bolc, (ed.). Springer-Verlag.

Dahl, V. and Saint-Dizier, P. (Eds.) 1985, 1988. Natural Language
Understanding and Logic Programming I and H. North-Holland.

Sterling, L. and Shapiro, E. 1986. The Art of Prolog. MIT Press,
Cambridge, MA.

JLP 1986. Special Issue of the Journal of Logic Programming on
Natural Language Understanding 3(4), December 1986.

Patrick Saint-Dizier was one of the organizers of the Work-
shop on Natural-Language Understanding and Logic Pro-
gramming, and is editor of the forthcoming proceedings, to be
published by North-Holland. In 1987, he was a visitor at
Simon Fraser University. Saint-Dizier's address is: Institut de
recherche en informatique et syst~mes al~atoires, Campus
Universitaire de Beaulieu, Avenue du G~n6ral Leclerc,
35042--Rennes C6dex, France.

EFFICIENT PARSING FOR NATURAL LANGUAGE: A
FAST ALGORITHM FOR PRACTICAL SYSTEMS
(THE KLUWER INTERNATIONAL SERIES IN
ENGINEERING AND COMPUTER SCIENCE: NATURAL-
LANGUAGE PROCESSING AND MACHINE TRANSLATION)

Masaru Tomita

(Carnegie-Mellon University, Pittsburgh, PA)
Boston, MA: Kluwer Academic Publishers, 1986, xviii

+ 201 pp.
ISBN 0-89838-202-5, $39.95 (hb)

Reviewed by
Miroslaw Batiko
Warsaw University

This book introduces a context-flee parsing algorithm
that is intended to be particularly useful in natural-
language processing. Practical applications of the algo-
rithm are discussed, including on-line parsing, inter-
active machine translation, and a technique to
disambiguate a sentence by consulting the user interac-
tively. The book opens with a diagnosis of the current
state of work on parsing context-flee languages. Two
kinds of" algorithms for context-flee languages are avail-
able: specific algorithms for programming languages,
and general algorithms intended to handle any context-
free grammar. Neither of them, however, is suitable for
natural languages. The former are very fast but not
powerful enough to cope with some syntactic phenom-
ena of natural languages; the latter are even too power-
ful, and therefore not so efficient as they could be.
Tomita's solution to the problem is to find something in
between: an algorithm that would be nongeneral in the
class of context-flee languages yet still powerful enough
to handle the great many ambiguities inherent in any
natural language.

The algorithm described can be viewed as an exten-
sion of the LR parsing algorithm, which is used for
programming languages (Aho and Ullman 1977). Like
the LR algorithm, it works strictly from left to right and
is entirely table-driven; unlike the LR algorithm, how-
ever, it is intended to parse ambiguous sentences, and
does it most efficiently, using the data structures that
have been specially designed for it. The current state of
parsing is represented in the form of a directed acyclic
graph, and no part of an input sentence is parsed more
than once in the same way. All the possible parses of an
ambiguous sentence are produced in parallel and stored
in a packed shared forest (PSF) for later computation.
While the number of parses grows exponentially, the
size of the PSF increases polynomially. The only other
algorithm that produces a polynomial-sized parse forest
without requiring a grammar to be in Chomsky Normal
Form is Earley's (1970) general algorithm intended to
handle any type of context-flee grammar. Tomita
shows, however, that Earley's original algorithm has a

80 Computational Linguistics, Volume 14, Number 2, June 1988

