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An Efficient Context-Free Parsing 
Algorithm 

JAY EARLEY 
University of California,* Berkeley, California 

A parsing algorithm which seems to be the most efficient gen- 
eral context-free algorithm known is described. It is similar to 
both Knuth's LR(k) algorithm and the familiar top-down algo- 
rithm. It has a time bound proportional to n 3 (where n is the 
length of the string being parsed) in general; it has an n 2 bound 
for unambiguous grammars; and it runs in linear time on a large 
class of grammars, which seems to include most practical 
context-free programming language grammars. In an empirical 
comparison it appears to be superior to the top-down and 
bottom-up algorithms studied by Griffiths and Petrlck. 

KEY WORDS AND PHRASES~ syntax analysis, parsing, context-free grammar, 
compilers, computational complexity 
CR CATEGORIES: 4.12, 5.22, 5.23 

1. I n t r o d u c t i o n  

Context-free grammars (BNF grammars) have been 
used extensively for describing the syntax of programming 
languages and natural languages. Parsing algorithms for 
context-free grammars consequently play a large role in 
the implementation of compilers and interpreters for pro- 
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NONR3656(23) with the Computer Center, University of Cali- 
fornia, Berkeley, and by the Advanced Research Projects Agency 
of the Office of the Secretary of Defense (F44620-67-C-0058), 
monitored by the Air Force Office of Scientific Research. 

gramming languages and of programs which "unders tand"  
or translate natural languages. 

Numerous parsing algorithms have been developed. 
Some are general, in the sense that they can handle all 
context-free grammars, while others can handle only sub- 
classes of grammars. The latter, restricted algorithms tend 
to be much more efficient. The algorithm described here 
seems to be the most efficient of the general algorithms, 
and also it can handle a larger class of grammars in linear 
time than most of the restricted algorithms. We back up 
these claims of efficiency with both a formal investigation 
and an empirical comparison. 

This paper is based on the author's 1968 report [I] where 
many of the points studied here appear in much greater 
detail. In Section 2 the terminology used in this paper is 
defined. In Section 3 the algorithm is described informally 
and in Section 4 it is described precisely. Section 5 is a 
s tudy of the formal efficiency properties of the algorithm 
and may  be skipped by those not interested in this aspect. 
Section 6 has the empirical comparison and in Section 7 the 
practical use of the algorithm is discussed. 

2.  T e r m i n o l o g y  

A language is a set of strings over a finite set of symbols. 
We call these terminal symbols and represent them by 
lowercase letters: a, b, c. We use a context-free grammar as a 
formal device for specifying which strings are in the set. 
This grammar uses another set of symbols, the non- 
terminals, which we can think of as syntactic classes. We 
use capitals for nonterminals: A, B, C. Strings of either 
terminals or nonterminals are represented by Greek letters: 
a, fl, 3,. The empty string is k. a ~ represents 

k t i m e s  

O/ " ' "  Or" 

[ a I is the number of symbols in a. There is a finite set of 
productions or rewriting rules of the form A --~ a. The non- 
terminal which stands for "sentence" is called the root R 
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of the grammar. The productions with a particular non- 
terminal D on their left sides are called the alternatives of 
D. Hereafter we use grammar to mean context-free gram- 
mar. 

We will work with this example grammar of simple 
arithmetic expressions, grammar AE: 

E ---~ T 

E-~E+T 

T--~P 

T-~T*P 

P-~a 

The terminal symbols are {a ,+ , .} ,  the nonterminals 
are {E, T, P}, and the root is E. 

Most of the rest of the definitions are understood to be 
with respect to a particular grammar G. We write a ~ f~ 
if ~I~, ~, ~/, A such that  a = ~A~ and fl = ~7/~ and A --+ 7/is 

a production. We write a ~ / ~  (fl is derived from a)  if 3 
strings no, al , • • • , ~ (m > O) such that  

The sequence no, . . . ,  a,~ is called a derivation (of ~ from 
a). 

A sentential form is a string a such that  the root R ~ a. 
A sentence is a sentential form consisting entirely of termi- 
nal symbols. The language defined by a grammar L(G)  is 
the set of its sentences. We may represent any sentential 
form in at  least one way as a derivation tree (or parse tree) 
reflecting the steps made in deriving it (though not the 
order of the steps). For  example, in grammar AE, either 
derivation 

E~E+T~T+T~T+P~T,P+P 

or 

E~E+T~E+P~T+P~T,P+P 

is represented by 

E 

E -4- T 

T p 

T * P 

The degree of ambiguity of a sentence is the number of its 
distinct derivation trees, A sentence is unambiguous if it 
has degree 1 of ambiguity. A grammar is unambiguous if 
each of its sentences is unambiguous. A grammar has 
bounded ambiguity if there is a bound b on the degree of 
ambiguity of any sentence of the grammar. A grammar is 
reduced if every nonterminal appears in some derivation of 
some sentence. 

V o l u m e  13 / Number  2 / February ,  1970 

A recognizer is an algorithm which takes as input a string 
and either accepts or rejects it depending on whether or not 
the string is a sentence of the grammar. A parser is a recog- 
nizer which also outputs the set of all legal derivation trees 
for the string. 

3. Informal  Explanation 

The following is an informal description of the algorithm 
as a recognizer: I t  scans an input string Xi . . .  X~ from 
left to right looking ahead some fixed number k of symbols. 
As each symbol X~ is scanned, a set of states S~ is con- 
structed which represents the condition of the recognition 
process at tha t  point in the scan. Each state in the set 
represents (1) a production such that  we are currently 
scanning a portion of the input string which is derived 
from its right side, (2) a point in tha t  production which 
shows how much of the production's right side we have 
recognized so far, (3) a pointer back to the position in the 
input string at which we began to look for that  instance of 
the production, and (4) a k-symbol string which is a 
syntactically allowed successor to tha t  instance of the 
production. This quadruple is represented here as a pro- 
duction, with a dot in it, followed by  an integer and a 
string. 

For  example, if we are recognizing a • a with respect to 
grammar AE and we have scanned the first a, we would be 
in the state set $1 consisting of the following states (ex- 
cluding the k-symbol strings): 

P --~ a. 0 

T ---~ P .  0 

T - +  T . . P  0 

E --~ T .  0 

E - ~ E . + T  0 

Each state represents a possible parse for the beginning 
of the string, given that  only the a. has been seen. All the 
states have 0 as a pointer, since all the productions repre- 
sented must have begun at  the beginning of the string. 

There will be one such state set for each position in 'the 
string. To aid in recognition, we place k -4- 1 right termina- 
tors " -~" (a symbol which does not appear elsewhere in 
the grammar)  at  the right end of the input string. 

To begin the algorithm, we put  the single state 

¢,~.R-~ -~ 0 
into state set So, where R is the root of the grammar and 
where ~ is a new nonterminal. 

In  general, we operate on a state set St as follows: we 
process the states in the set in order, performing one of 
three operations on each one depending on the form of the 
state. These operations may add more states to S~ and 
may also put  states in a new state set Si.1. We describe 
these three operations by example. 

In  grammar AE, with k = 1, So starts as the single state 

~ .E  -~ -~ 0 (1) 
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The predictor operation is applicable to a state when there 
is a nonterminal to the right of the dot. I t  causes us to 
add one new state to S~ for each alternative of tha t  non- 
terminal. We put  the dot at the beginning of the produc- 
tion in each new state, since we have not scanned any of 
its symbols yet. The pointer is set to i, since the state was 
created in S~. Thus the predictor adds to S~ all productions 
which might generate substrings beginning at X~+~. 

In  our example, we add to So 

E ~ . E + T  4 0 (2)  

E--~ .T  4 0 (3) 

The k-symbol look-ahead string is 4,  since it is after E in 
the original state. We must now process these two states. 
The predictor is also applicable to them. Operating on (2), 
it produces 

E--~ .E+T + 0 (4) 

E - ~ . T  + 0 (5) 

with a look-ahead symbol --? because it appears after E in 
(2). Operating on (3), it produces 

T --~ . T . P  4 0 

T--~ .P 4 0 

Here the look-ahead symbol is 4 because T is last in the 
production and 4 is its look-ahead symbol. Now, the 
predictor, operating on (4) produces (4) and (5) again, 
but  they axe already in So, so we do nothing. From (5) it  
produces 

T--~  . T . P  -+ 0 

The rest of So is 

T - - + . P  + 0 

T --~ . T*P 

T - ~  .P * 

P-~ .a 4 

P --~ .a + 

19"--> . a  * 

• 0 

0 

0 

0 

0 

The predictor is not  applicable to any of the last three 
states. Instead the scanner is, because it is applicable just 
in case there is a terminal to the right of the dot. The 
scanner compares tha t  symbol with X~+i, and if they 
match, it adds the state to S~+1, with the dot moved over 
one in the state to indicate tha t  tha t  terminal symbol has 
been scanned. 

If X1 = a, then S1 is 

P ~ a .  4 0 

P ~ a .  + 0 

P-+a. • 0 

these states being added by  the scanner. 

(6) 

If  we finish processing S~ and S~+1 remains empty, an 
error has occurred in the input string. Otherwise, we start  
to process S~+1. 

The third operation, the completer, is applicable to a 
state if its dot is at the end of its production. Thus the 
completer is applicable to each of these states in S~. 
I t  compares the look-ahead string with Xi+~ . - -  X~+~. If  
they match, it goes back to the state set indicated by  the 
pointer, in this case So, and adds all states from So which 
have P to the right of the dot. I t  moves the dot over P in 
these states. Intuitively, So is the state set we were in when 
we went looking for tha t  P. We have now found it, so we 
go back to all the states in So which caused us to look for a 
P, and we move the dot over the P in these states to show 
that  it  has been successfully scanned. 

I f  X2 = -4-, then the completer applied to (6) causes us 
to add to $i 

T-+P. 4 0 

T'-+ P. + 0 

T-+P. * 0 

Applying the completer to the second of these produces 

E - - I T .  4 0 

E - a T .  -5 0 

T --> T . * P  4 0 

T "-+ T . * P  -5 0 

T ---~ T . * P  * 0 

and finally, from the second of these, we get 

¢ - ~ E .  4 4 0 

E --~ E . + T  4 0 

E--~ E . + T  + 0 

The scanner then adds to S~ 

E - +  E + . T  4 0 

E - +  E + . T  + 0 

If  the algorithm ever produces an S~+1 consisting of the 
single state 

, ~ E 4 .  4 0 

then we have correctly scanned an E and the 4,  so we are 
finished with the string, and it is a sentence of the grammar. 

A complete run of the algorithm on grammar AE is 
given in Figure 1. In  this example, we have writ ten as 
one all the states in a state set which differ only in their 
look-ahead string. (Thus " 4 + * "  as a look-ahead string 
stands for three states, with " 4 ", " + " ,  and "*"  as their 
respective look-ahead strings.) 

The technique of using state sets and the look-ahead are 
derived from Knuth ' s  work on LR(k )  grammars [2]. In  
fact our algorithm bears a close relationship to Knuth ' s  
algorithm on LR (k) grammars except for the fact tha t  

96 C o m m u n i c a t i o n s  o f  t h e  ACM V o l u m e  13 / N u m b e r  2 / F e b r u a r y ,  1970 



So 
(X*fa) 

Sl 
(X2=+) 

GRAMMAR AE 

root: E --~ T [ E-ST input  string = a-sa*a 
T- -~P  [ T*P 
P--~a 

¢-,.Eq q 
E-~ .Eq-T -~ + 
E--~ .T -~-5 
T--~.T*P 4 +* 
T ~ .P ~ -5* 
P ~ .a -~ -5* 

P-~a. q-5* 
T-*P. -~+* 
E-~T. ~-5 
T --~ T.*P -~-5. 
* -~ E.q q 
E -~ E.-ST ~-5 

S~ E-*E+.T q+ 
(X~=a) T-~.T*P q +* 

T --~ .P -[ -5* 
P -~ .a q +* 

~ = 1  

0 Sa P --~ a. -~+*  2 
0 (X*=*) T- -~P .  "~+*  2 
0 E ~ E + T .  "~+  0 
0 T - - ~ T . * P  "~ + *  2 
0 
0 S~ T- -~T*.P  ~ - 5 "  2 

(X~=a) P - ~ . a  ~ - 5 .  4 
0 
0 S~ P - ~ a .  "I.-{.-* 4 
0 (X~=-~) T- -~T*P.  -~-5 .  2 
0 E--~ E+T. ~+ 0 
0 T-~T.*P ~ +* 2 
0 ¢ -~ E.q q 0 

E -~ E.-ST "~-5 0 
0 
2 S~ ~Eq. q 0 
2 
2 

Fro. 1 

he uses a stack rather  than  pointers to keep t rack of what  
to do after a parsing decision is made. 

Note  also that ,  although it did not develop this way, 
our algorithm is in effect a top-down parser [3] in which 
we carry along all possible parses simultaneously in such 
a way tha t  we can often combine like subparses. This cuts 
down on duplication of effort and also avoids the left- 
recursion problem. (A straightforward top-down parser 
may  go into an infinite loop on grammars  containing left- 
recursion, i.e. A --~ A~.) 

4. T h e  R e c o g n i z e r  

The following is a precise description of the recognition 
algorithm for input  string X~ • • • X .  and g rammar  G. 

NOT~TmN. Number  the productions of g rammar  G ar- 
bitrarily 1, . . . ,  d - 1, where each production is of the 
form 

D~--~ C~ "-- C ~  (1 _-< p ~ d -- 1) 

where p is the number  of symbols on the right-hand side 
of the p th  production. Add a 0th production 

D0 --+ R -~ 

where R is the root of G, and -~ is a new terminal symbol. 
Definition. A state is a quadruple (p, j ,  f, a> where p, j ,  

and f are integers ( 0 ~ p  = < d - -  1) ( 0 = < j E T )  (0__<f 
n -t- 1 ) and a is a string consisting of k terminal symbols. 
state set is an ordered set of states. A final state is one in 
which j = ~. We add a state to a s tate  set by  put t ing it 
last in the ordered set unless it is already a member. 

Definition. Hk ( ' y )  = { ce [ a is terminal, ] a [ = k, and 

fl such tha t  7 ~ a~}. 
H~ (~) is the set of all k-symbol terminal strings which 

begin some string derived from % This is used in forming 
the look-ahead string for the states. 

THE RECOGNIZER. This is a function of three argu- 

ments REC(G,  Xi • • • X~,  k) computed as follows: 

LetX,+~ =-~ (1-<i-< k + l ) .  
Let S~ be empty (0 ~ i _-< n + 1). 
Add (0,0,0,~ ~) to So. 

For i ~-- 0 step 1 until n do 
Begin 

Process the states of St in order, performing one of the following 
three operations on each state s = (p, j, f, ~>. 

(1) Predictor: If s is nonfinal and Cp¢j+l) is a nonterminal, 
then for each q such that C~¢j+n = Dq, and for each 
fl 6 tIk(Cp¢~+2) ..- C~o~) add (q, 0, i, fl> to S~. 
(2) Completer: If s is final and ~ = Xi+l . . .  Xi+~, then for 
each (q,l,g,~> 6 Sf (after all states have been added to Sf) such 
that C~a+~) = Dp, add (q,l + 1, g, ~> to S~. 
(3) Scanner: If s is nonfinal and C~¢y+n is terminal, then if 
Cp(~+l) = X~+i , add (p, j + 1, f, o~> to S~+~ . 

If S~+i is empty, return rejection. 
If i = n and S~+~ = {(0,2,0,-~>}, return acceptance. 

End 

Notice tha t  the ordering imposed on state sets is not 
impor tant  to their meaning but  is simply a device which 
allows their members  to be processed correctly by  the 
algorithm. Also note tha t  i cannot  become greater than  n 
without  either acceptance or rejection occurring because 
of the fact  tha t  -~ appears only in production zero. This 
does not really represent a complete description of the 
algorithm until we describe in detail how all these opera- 
tions are implemented on a machine. The following de- 
scription assumes a knowledge of basic list processing tech- 
niques. 

Implementation 
(1) For each nonterminal, we keep a linked list of its 

alternatives, for use in prediction. 
(2) The  states in a state set are kept  in a linked list 

so they can be processed in order. 
(3) In  addition, as each state set S~ is constructed, we 

put  entries into a vector of size i. The f t h  entry in this 
vector  (0 =< f ~ i )  is a pointer to a list of all states in St 
with pointer f,  i.e. states of the form ~p, j ,  f, ~} 6 S~ for 
some p, j ,  ~. Thus, to test  if a s tate (p, j ,  f, ~) has already 
been added to S~, we search through the list pointed to 
by  the f t h  entry in this vector. (This takes an amount  of 
t ime independent of f . )  The  vector and lists can be dis- 
carded after  S~ is constructed. 

(4) For  the use of the completer, we also keep, for each 
state set S~ and nonter~final N, a list of all states <p, j ,  f, ~) 
6 S~ such tha t  C~¢i+1) -- N. 

(5) I f  the g rammar  contains null productions (A --~ ~), 
we cannot implement  the completer in a straightforward 
way. When performing the completer on a null s tate 
(A-~. a i )  we want  to add to Si each state in S~ with A 
to the right of the dot. But  one of these may  not have been 
added to St yet. So we must  note this and check for it 
when we add more states to S~. 

The above implementat ion description is not meant  to 
be the only way or the best way to implement  the al- 
gorithm. I t  is merely a method which does allow the 
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algorithm to achieve the t ime and space bounds which 
we quote in Section 5. 

The correctness of this recognizer has been proved in 
[1]. I t  requires no restrictions of any kind on the context- 
free g rammar  to be successful. 

5. T i m e  a n d  Space  B o u n d s  

To develop some idea of the efficiency of the algorithm, 
we can use a formal model of a computer  and measure the 
t ime as the number  of primitive steps executed by  this 
model and the space as the number  of storage locations 
used. We use a random access model (described in the 
Appendix) because we feel tha t  this model represents most  
accurately the properties of real computers which are 
relevant to syntax analysis. 

We are interested in upper  bounds on the t ime (and less 
impor tant  the space) as a function of n (the length of the 
input  string) for various classes of context-free grammars.  
Specifically, an n 2 algorithm for a subclass A of grammars  
means tha t  there is some number  C (which may  depend 
on the size of the grammar,  but  not on n) ,  such tha t  Cn 2 
is an upper  bound on the number  of primitive steps re- 
quired to parse any  string of length n with respect to a 
g rammar  in class A. 

THE GENERAL CASE. Our algorithm is an n 3 recognizer 
in general. The reasons for this are: 

(a) The number  of states in any state set S~ is propor- 
tional to i (--~i) because the ranges of the p, j ,  and a 
components of a state are bounded, while only the f com- 
ponent  depends on i, and it  is bounded by  n. 

(b) The scanner and predictor operations each execute 
a bounded number  of steps per state in any state set. So 
the total  t ime for processing the states in S~ plus the scanner 
and predictor operations is ~-~i. 

(c) The  completer executes ~--~i steps for each state it 
processes in the worst  case because it may  have to add ~ f  
states for Si ,  the state set pointed back to. So it takes 
~ i  2 steps in S i. 

(d) Summing from i = 0, • . .  , n + 1 gives ~ n  ~ steps. 
This bound holds even if the look-ahead feature is not  

used (by setting/c = 0). The bound is no bet ter  than  tha t  
obtained by  Younger [4] for Coeke's algorithm [5], bu t  
our algorithm is bet ter  for two reasons. Ours does not 
require the g rammar  to be put  into any  special form 
(Coeke's required normal form),  and ours actually does 
bet ter  than  n 3 on most  grammars,  as we shall show (Cocke's 
always requires n3). Furthermore,  al though Younger 's  n 3 
result is obtained on a Turing machine, his algorithm is in 
no way made faster by  put t ing it  on a random access 
machine. 

UNAMBmUOUS GRAMMARS. The  completer is the only 
operation which forces us to use i 2 steps for each s tate  set 
we process, making the whole thing n ~. So the question is, 
in what  cases does this operation involve only i steps in- 
stead of i2? I f  we examine the s tate  set S~ after  the com- 
pleter has been applied to it, there are at  most  proportional 
to i states in it. So unless some of them were added in more 

than  one way (this can happen;  tha t ' s  why we must  test  
for the existence of a state before we add it to a s tate  set)  
then it took at  most  H i  steps to do the operation. 

In  the case tha t  the g rammar  is unambiguous and re- 
duced, we can show tha t  each such state gets added in 
only one way. Assume tha t  the state (q, j +  1, f, a) is added 
to Si in two different ways by  the completer. Then we have  

Sl = ( p l ,  PPl, f l ,  Xi,1 . . .  Xi+k) C S~, 

s2 = (p2, P2, f2, X~+i . . .  X~+k) E S~, 

(q, j ,  f, a) E Ss, and Sf2 , Dp~ = Cq(i+l) = D~2 

and either pl ~ p~ or fl ~ f2, for otherwise sl and s2 would 
be the same state. 

So we have 

X~ . . .  XsC~ . - .  Cq(i+l) ~ X~ . . .  Xf~ C ~  . . -  C ~  

. 
X 1  • • • X i  

and 

X l  " ' "  X f C q l  " ' "  Cq(3+l ) ~ X l  " ' "  Xf2C!a21 " ' "  Cp2~2 

X1 . . .  X ,  

and since pl = p2 and fl = f2 cannot both  be true, the 
above two derivations of X~ . . -  X¢ are represented by  
different derivation trees. Therefore since the g rammar  is 
reduced, every nonterminal  generates some terminal string, 
and so there exists an ambiguous sentence X ~  • . .  X ~ a  for 
some a. 

So if the g rammar  is unambiguous,  the completer ex- 
ecutes ~ i  steps per state set and the t ime is bounded by  
n 2. Notice tha t  the t ime is also n 2 for g rammars  with 
bounded ambigui ty  since each state can then be added by  
the completer only a bounded number  of times. In  [1] we 
show tha t  the t ime is n 2 for an even larger class of gram- 
mars, and thereby also obtain Younger 's  n ~ results for 
linear and metalinear grammars  [6]. 

Kasaini [7] has also obtained independently the result for 
unambiguous grammars,  but  his algorithm (which is a 
modification of Cocke's) has the disadvantage tha t  i t  re- 
quires the g rammar  in normal  form. His algorithm, like 
ours, achieves its t ime bound on a random access machine 
only. 

LINEAR TIME. We now characterize the class of gram- 
mars which the algorithm will do in t ime n. We notice t ha t  
for some grammars  the number  of states in a s tate  set can 
grow indefinitely with the length of the string being recog- 
nized. For  some others there is a fixed bound on the size 
of any state set. We call the la t ter  g rammars  b o u n d e d  state 
grammars.  They  can be done by  the algorithm in t ime n for 
the following reason. Let  b be the bound on the number  of 
states in any  s tate  set. Then the processing of the states 
in a state set together with the scanner and predictor re- 
quires ~ b  steps, and the completer  requires ~ b  2 steps. 
Summing over all the state sets gives us ~b2n or ,~n  
steps. 

So the class of t ime n grammars  for our algorithm in- 
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eludes the  bounded  state  grammars ,  bu t  i t  ac tual ly  in- 
eludes more. We now examine how this class of g rammars  
compares  with those t h a t  can be done in linear t ime by  
other  algorithms. Mos t  of the  previously ment ioned "re- 

str ic ted" algori thms work  on some subclass of g rammars  
which they  can do in t ime n, and we will hencefor th  call 
t h e m  time n algorithms. K n u t h ' s  L R ( k )  a lgor i thm [2] 
works on a class of g rammars  which includes those of 
just  about  all the  others, so his will be a good one for com- 
parison if we expect to  do well. 

I t  turns  ou t  t h a t  a lmost  all L R ( k )  g rammars  are 
bounded  state  (except for certain r ight  recursive gram- 
mars) .  And  even though  some L R  (k) g rammars  m a y  not  
be bounded  state, all of t hem can be done in t ime n by  
our  a lgor i thm if a look-ahead of k or greater  is used. I n  
fact  any  finite union of L R  (k) g rammars  (obtained b y  
combining the g rammars  in a s t ra ightforward wa y  in order 
to generate the  union of the languages)  is a t ime n gram- 
mar  for our  a lgor i thm given the  proper  look-ahead.  (This 
is proved in [1].) 

I t  is here t h a t  the  look-ahead feature of the a lgor i thm 
is mos t  obviously useful. We can obtain  the n 3 and  n 2 re- 
sults wi thou t  it, bu t  we cannot  do all L R  (k) g rammars  in 
t ime n wi thout  it. I n  addition, a look-ahead of k = 1 is 
a good practical  device for cut t ing  down on a lot of ex- 
t raneous processing with m a n y  common  grammars .  

The  t ime n g rammars  for our  algori thm, then,  include 
bounded  state  grammars ,  finite unions of L R  (k) gram- 
mars, and  others. T h e y  include m a n y  g rammars  which 
are ambiguous,  and some with unbounded  degree of am-  
biguity,  bu t  unfor tuna te ly  there are also unambiguous  
g rammars  which require t ime n 2. 

GRAMMAR UBDA 

root: A - + x  [AA sentences: X" (n >= 1) 

REC(UBDA, x 4, 1) 

S0 4,-+.Aq -i 0 8a A - + x .  qx 2 
A - - , . x  -ix 0 A--~AA. -ix 1 
A--+.AA -ix 0 A-+AA.  -ix 02 

A - + A . A  qx 2 81 A u x .  -ix 0 
A--~A.A -ix 1 4, ~A. - I  -i o 

A--~A.A -ix 0 4, -+A.-I -i 0 
A - + . x  -ix 1 A - + A . A  -ix 0 
A - + . A A  -ix 1 A--~.x qx 3 

A - + . A A  -ix 3 
82 A ~ x .  -ix 1 

A---~AA. qx 0 $4 A - + x .  -ix 3 
A~_AA. -ix 2 A--~A.A -ix 1 

4,---~A.-I -i 0 A-+AA.  -ix i ~ 
A--+AA. -~x 0 3 A - ~ A . A  -ix 0 
A--+A.A -ix 3 A - + . x  -ix 2 
A--~A.A -ix 2 A--~.AA ~x 2 
A--~A.A -~x 1 
4, ~ h . - i  -i 0 
A--~A.A -ix 0 
A--~ .x -ix 4 
A--+.AA -ix 4 

Ss 4,--'~A-I. -i 0 

The  following examples i l lustrate some of the  ideas in 
this section. G r a m m a r  U B D A  (Figure 2)  ac tual ly  re- 
requires t ime proport ional  to  ¢ .  Not ice  t h a t  s ta te  

A --~ A A .  ~x  02 

gets added twice by  the  completer.  This  is signified b y  the  
superscript  on the 0. One can tell b y  the  looks of the  super- 
scripts on states 

A ---~ AA.  ~x  2 

A --~ AA.  ~x 12 

A ~ A A .  ~x  0 ~ 

in $4 t h a t  there  are H i  states, each of which is added H i  
times, in ~-~n state  sets, producing the n 3 behavior.  

G r a m m a r  B K  (Figure 3)  has unbounded  ambigui ty ,  b u t  
i t  is a t ime n grammar ,  and  in fact  it is bounded  state. 
This can be seen because all the  s tate  sets after  Si are the  
same size. G r a m m a r  P A L  (Figure 4)  is an unambiguous  
g r a m m a r  which requires t ime n 2. S~ and S~+1 each have  
i + 4 states in them,  up to  and including S~, so the  tota l  
number  of states is ~-~n 2. 

SPACE. Since the space is taken  up b y  ~ n  state sets, 
each containing N n  states, the  space bound  is n 2 in general. 
This is comparable  to  Cocke 's  and Kasami ' s  algorithms, 
which also require n 2. However ,  it has  the  advan tage  over  
Cocke 's  in t h a t  the  n 2 is only an upper  bound  for  ours, 
while his requires n 2 all the time. 

So 

S~ 

GRAMMAR BK 

root: K --~ ] KJ sentences: 
J ~ F I I  
F - + x  
X-~x 

REC(BK, x", 1) 

x~ (n ->_ 0) 

4 , ~ . K - I  -i o 
K--*.  "Ix 0 
K- -~ .KJ  -ix 0 
4, ~ K.-I -i 0 
K - + K . J  -ix 0 
J --+ .F ~x 0 
J - + . I  -ix 0 
F~.x -ix 0 
I - ~ . x  -Ix 0 

F ~ x .  -ix 0 
I ~ x .  -ix 0 
J ~ F .  -ix 0 
J - + I .  -ix 0 
K - + K J .  -ix 02 
K- -~K.J  -ix 0 
4 , ~ K . - I  -i o 
J --~ .F -ix 1 
J --~ .I  -ix 1 
F~.x -ix I 
I - + . x  -ix 1 

Si (2 =< i ~ n) 
F --~ x. -ix i - 1  
F-->x.  -ix i - - 1  
J o F .  -ix i -- 1 
,1 - ~ I .  -Ix i - -  1 
K - + K J .  -ix 02 
K - + K . J  -ix 0 
4, -~ K.-I 0 
J - + . F  -ix i 
J ~ .I -ix i 
F - -~ .x  -ix i 
I --~ .x -ix i 

Sn%l 
¢ - ~ K ~ .  ~ 0 

FIG. 2 FIG. 3 
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A--~ x [ 

So ¢~ 
A 
A 

S~ A 
A 
¢ 
A 
A 

$2 

S~ 

xAx 

--+X. 

x.Ax 
A d  
.X 

-+ . xAx 

A-+x. 

A--~ x.Ax 

A ~ xA.x 

A ---~ .x 

A --~ . xAx 

A --~ xAx. 
A ---> x .  

A-~, x.Ax 
4' ~A.-~ 
A ~ xA.x 
A-.-~ . x  

A -+ . xAx 

GRAMMAR PAL 

sentences : x" 

REC(PAL, x s, 0): 

-+.A-~ 0 $4 A ~ x A x .  1 
.x 0 A--~x.  3 
.xAx 0 A - + x . A x  3 

A ----~ xA.x 0 0 
A --~ xA.x 2 0 

0 A--~ .x 4 
1 A ~ .xAx 4 

i $5 A ~ xAx. 0 
1 A --~ xAx. 2 
1 A - + x .  4 

A - *  x.Ax 4 0 
2 qa --~ A.-~ 0 

A --+ xA.x 1 2 
A -* xA.x 3 

0 A - *  .x 5 
2 A -* xAx. 5 
2 
0 
1 S~ ~b --+A-~. 0 

3 
3 

(n => 1, nodd)  

FIG. 4 

6. E m p i r i c a l  R e s u l t s  

W e  have  p r o g r a m m e d  the  a lgo r i t hm and  t e s t ed  i t  aga ins t  
t he  t o p - d o w n  and  b o t t o m - u p  parsers  e v a l u a t e d  b y  Griff i ths  
and  P e t r i c k  [8]. These  are  t he  o ldes t  of t he  contex t - f ree  
parsers ,  a n d  t h e y  d e p e n d  heav i l y  on back t r ack i ng .  Pe r -  
haps  because  of this ,  t he i r  u p p e r  bounds  for  t ime  are  
exponen t i a l  (C" for  some cons t an t  C) .  However ,  t h e y  
also can  do well  on some g rammars ,  a n d  b o t h  have  been  
used  in  numerous  compi ler -compi lers ,  so i t  wil l  be  in-  
t e r e s t ing  to  compare  our  a lgo r i t hm wi th  them.  

T h e  Griff i ths a n d  P e t r i c k  d a t a  is no t  in  t e r m s  of a c t u a l  
runn ing  t imes  b u t  in t e rms  of " p r i m i t i v e  ope ra t i ons . "  
T h e y  h a v e  expressed the i r  a lgo r i thms  as  sets  of nonde-  
t e rmin i s t i c  r ewr i t ing  rules for a Tur ing -mach ine - l i ke  device.  
E a c h  app l i ca t ion  of one of these  is a p r i m i t i v e  opera t ion .  
W e  h a v e  chosen as our  p r imi t i ve  ope ra t ion  the  ac t  of 
add ing  a s t a t e  to  a s t a t e  set  (or a t t e m p t i n g  to  a d d  one 
which  is a l r e a d y  there) .  W e  feel t h a t  th is  is compa ra b l e  to  
t he i r  p r i m i t i v e  opera t ion  because  b o t h  are  in  some sense 
t he  mos t  complex  ope ra t ion  pe r fo rmed  b y  the  a lgo r i t hm 
whose complex i ty  is i n d e p e n d e n t  of the  size of t he  g r a m -  
m a r  or  i n p u t  s t r ing.  

W e  compare  t he  a lgor i thms  on seven dif ferent  g r a m m a r s .  
T w o  of the i r  examples  were  no t  used because  t he  exac t  
g r a m m a r  was  no t  given.  F o r  t he  first  four, Griff i ths  and  
P e t r i c k  were able  to  f ind c losed-form expressions for  t he i r  
resul ts ,  so we d id  also (F igure  5) .  B U  and  T D  are  t he  
b o t t o m - u p  and  t o p - d o w n  a lgor i thms  respec t ive ly  and  S B U  
and  S T D  are  the i r  select ive versions.  I t  is obvious  f rom 
these  resul ts  t h a t  S B U  is b y  far  t he  bes t  of t he  o the r  al-  
gor i thms ,  a n d  the  res t  of the i r  d a t a  bea r s  th i s  out .  There-  
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G1 G2 G3 G4 
root: root: root: root: 

S --+ Ab S - t a B  S-+  ab } aSb S ---~ AB 
A - ~ a  [ Ab B - * a B  [ b  A - - ~ a [ A b  

B-~bc l bB I Bd 

Gram- Sen- 
mar tence T D  S T D  B U  S B U  Ours 
G1 ab n ( n ~ + 7 n  ( n 2 + 7 n  9 n + 5  9 n + 5  4 n + 7  

+2)/2  +2) /2  
G2 anb 3 n + 2  2 n + 2  11.2 n + 7  4 n + 4  4 n + 4  
G3 anb n 5n -- 1 5n -- 1 11.2 n-~ -- 5 6n 6n + 4 
G4 abncd ~ 2  n+6 ~ 2  n+2 ~ 2  n+s (n 3 + 21n 2 + 463 183 + 8 

+ 15)/3 

FIG. 5 

PROPOSITIONAL CALCULUS GRMViMAR 

root: F - - ~ C  I S I P ] U 
C ~ U D U  
U ~ ( F )  I ~ U I L  
L- -~L '  I p  [ q  I r  
S - ~ U V  S [ U V U  
P--~U AP [ UAU 

Sentence Length  PA SBU 
p 1 14 18 
(PAq) 5 89 56 
( p ' A q ) V r V p V q '  13 232 185 
p ~ ( ( q 3 N ( r ' V ( p A q ) ) )  26 712 277 

(q 'Vr) 
N( ,~P 'A  (qVr)Ap' ) )  
( (pAq)V (qAr) V( rAp ' ) )  

3 N ( ( p ' V q ' ) A ( r ' V p ) )  

OUrs 

28 
68 

148 
277 

17 1955 223 141 
38 2040 562 399 

FIG. 6 

GRAMMAR GRE 
root: X - - + a l X b l Y a  

Y - + e  [YdY 

Sentence Length PA SB U Ours 
ededea 6 35 52 33 
ededeab 4 10 75 92 45 
ededeab 1° 16 99 152 63 
ededeab 2°° 206 859 2052 633 
(ed)%abb 12 617 526 79 
(ed)7eabb 18 24352 16336 194 
(ed)Seabb 20 86139 54660 251 

FIO. 7 

GRAM.MAR NSE 

root: S--+ AB 
A ~ a  1SC 
B--~b I DB 
C - ~ c  
D- -~d  

Sentence Length  S B U  Ours 

adbcddb 7 43 44 
ad3bcbcd~bcd4b 18 111 108 
adbcd2bcd6bcd3b 19 117 114 
ad18b 20 120 123 
a(bc)~da(bcd)Mbcd4b 24 150 141 
a (bcd) Mbcd3bcb 16 100 95 

FIG. 8 
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fore we compare our algorithm with SBU only. We used 
our algorithm with k = 0. The two are comparable on 
G1, G2, G3, the simple grammars, but  on G4, which is 
very ambiguous, ours is clearly superior--n to n *. 

For  the next three grammars we present only the raw 
data  (Figures 6-8).  The data for our algorithm was ob- 
tained by  programming it and having the program com- 
pute the number of primitive operations it performed. We 
have also included the data from [8] on PA, the predictive 
analyzer, which is a modified top-down algorithm. On the 
propositional calculus grammar, PA seems to be running 
in time n 2, while both SBU and ours run in time n, with 
ours a little faster. Grammar GRE produces two kinds 
of behavior. All three algorithms go up linearly with the 
number of "b" 's, with SBU using a considerably higher 
constant coefficient. However, PA and SBU go up ex- 
ponentially with the number of "ed" 's, while ours goes 
up as the square. Grammar NSE is quite simple, and each 
algorithm takes time n with the same coefficient. 

So we conclude that  our algorithm is clearly superior 
to the backtracking algorithms. I t  performs as well as 
the best of them on all seven grammars and is substan- 
tially faster on some. 

There are at least four distinct general context-free al- 
gorithms besides ours - -TD,  BU, Kasami's n 2, and Cocke's 
n ~. We have shown so far tha t  our algorithm achieves time 
bounds which are as good as those of any of these al- 
gorithms, or better. However, we are also interested in 
how our algorithm compares with these algorithms in a 
practical sense, not  just at an upper bound. 

We have just presented some empirical results in this 
section which indicate tha t  our algorithm is bet ter  than 
T D  and BU. Furthermore, our algorithm must be su- 
perior to Cooke's since his always achieves its upper bound 
of n 8. This leaves Kasami's. His algorithm [7] is actually 
described as an algorithm for unambiguous grammars, bu t  
it can easily be extended to a general algorithm. In  this 
form we suspect tha t  it  will have an n 3 bound in general 
and will be n 2 as often as ours. We are aware of no results 
about  the class of grammars that  it can parse in time n. 

7. T h e  P r a c t i c a l  Use o f  t h e  A l g o r i t h m  

In  this section we discuss the question, in what  areas and 
in what form can the algorithm best be put  to use? 

TH~ FoRm. Before we can do much with it, we must 
make the recognizer into a parser. This is done by  altering 
the recognizer so that  it builds a parse tree as it does the 
recognition process. Each time we perform the comple- 
ter  operation adding a state E - ~  aD .~  g (ignoring look- 
ahead) we construct a pointer from the instance of D in 
that  state to the state D --~ 7. f which caused us to do the 
operation. This indicates tha t  D was parsed as 7. In  case 
D is ambiguous there will be a set of pointers from it, 
one for each completer operation which caused E -+ aD.  f lg 
to be added to the particular state set. Each symbol in 
.y will also have pointers from it (unless it is terminal),  
and so on, thus representing the derivation tree for D. 

In  this way, when we reach the terminating state 
~b --~ R ~ .  0 we will have the parse tree for the sentence 
hanging from R if it  is unambiguous, and otherwise we will 
have a factored representation of all possible parse trees. 
In  [1] a precise description of this process is given. 

The time bounds for the parser are the same as those of 
the recognizer, while the space bound goes up to n 3 in 
general in order to store the parse trees. 

We recommend using consistently a look-ahead of k = 1. 
In  fact it  would probably be most efficient to implement 
the algorithm to do just a look-ahead of 1. To implement 
the full look-ahead for any k would be more costly in 
programming effort and less efficient overall since so few 
programming languages need the extra look-ahead. Most  
programming languages use only a one character context 
to disambiguate their constructs, and if two characters 
are needed in some cases, our algorithm has the nice 
property that  it will not  fail, i t  may just take a little longer. 

Our algorithm has the useful property that  it  can be 
modified to handle an extension of context-free grammars 
which makes use of the Kleene star notation. In  this nota- 
tion: A --~ {BC} .  D means A may be rewritten as an 
arbitrary number (including 0) of BC's followed by  a D. 
I t  generates a language equivalent to tha t  generated by  
A --~ D ]BCA. However, the parse structure given to the 
language is different in the two grammars: 

A A 

B C A 

B C B C D B C A 

I 
D 

Structures like tha t  on the left cannot be obtained using 
context-free grammars at  all, so this extension is useful. 
The modification to our algorithm which implements it 
involves two additional operations: 

(1) Any state of the form 

is replaced by  

A ~ o.{,e}*~ f 

A ~ o~{.~}*~ f 

A ---~ ,x{~}*.~ f 

indicating that  fl may be present or absent. 
(2) Any state of the form 

is replaced by 

A--+ ,~{ .~}*~ f 

A ---+ o~{~}*.~ f 

indicating the fl may be repeated or not. 
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THE UsE. The algorithm will probably be most useful 
in natural  language processing systems where the full power 
of context-free grammars is used. I t  should also be useful 
in compiler writing systems and extendible languages. In  
most compiler writing systems and extendible languages, 
the programmer is allowed to express the syntax (or the 
syntax extension) of his language in something like BNF,  
and the system uses a parser to analyze subsequent pro- 
grams in this language. Programming language grammars 
tend to lie in a restricted subset of context-free grammars 
which can be processed efficiently, yet  some compiler 
writing systems in fact use general parsers, so ours may be 
of use here. In  addition to its efficiency properties, ours 
has the advantage that  it accepts the grammar in the form 
in which it is written, so tha t  semantic routines can be 
associated with productions without fear tha t  the parser 
will not reflect the original structure of the grammar. 

Our algorithm will not compete so favorably with the 
time n algorithms, however. Certainly ours will do in time 
n any grammar that  a t ime n parser can do at all, but  
this does not take into account the constant coefficient of n. 
Most of the time n algorithms really consist of a two-fold 
process. First they compile from an acceptable grammar a 
parser for tha t  particular grammar, and then the grammar 
may be discarded and the compiled parser used directly to 
analyze strings. This allows the time n algorithms to in- 
corporate much specialized information into the compiled 
parser, thus reducing the coefficient of n to something 
quite small--probably an order of magnitude less than 
that  of our algorithm. 

Consequently we have developed a compilation process 
for our algorithm which works only on time n grammars 
and reduces our coefficient to approximately the same order 
of magnitude as those of the time n parsers. This may make 
our algorithm competitive with them, but  we have not  
implemented and tested it, so this is speculation. Some sort 
of efficient time n parser for a larger class of grammars is 
needed, however, because most restricted parsers suffer 
from the problem that  the grammar one naturally writes 
for many programming languages is not acceptable to 
them, and much fiddling must be done with the grammar 
to get it accepted. Knuth 's  algorithm is an exception to 
this, but  it has the problem that  the size of the compiled 
parser is much too great for reasonable programming lan- 
guage grammars (see [1, p. 129]). Unfortunately,  our 
compiled algorithm, since it  is similar to Knuth 's ,  may 
also have these problems. 

8.  C o n c l u s i o n  

In  conclusion let us emphasize tha t  our algorithm not 
only matches or surpasses the best previous results for 
times n 3 (Younger), n 2 (Kasami) and n (Knuth) ,  but  it 
does this with one single algorithm which does not  have 
specified to it the class of grammars it is operating on and 
does not require the grammar in any special form. In  
other words, Knuth ' s  algorithm works only 'on LR(k )  

grammars and Kasami's (at least in his paper)  only on 
unambiguous ones, but  ours works on them all and seems 
to do about  as well as other algorithms automatically. 

A p p e n d i x  

RANDOM ACCESS MACHINE. This model has an un- 
bounded number of registers (counters), each of which may 
contain any nonnegative integer. These registers are named 
(addressed) by successive nonnegative integers. The  primi- 
tive operations which are allowed on these registers are as 
follows: 

(1) Store 0 or the contents of one register into another. 
(2) Test  the contents of one register against 0 or against 

the contents of another register for equahty. 
(3) Add 1 or subtract  1 from the contents of a register 

(taking 0 -  1 = 0). 
(4) Add the contents of one register to another. 
The control for this model is a normal finite state device. 

The  most important  property of this machine is tha t  in the 
above four operations, the register R to be operated on 
may  be specified in two ways: 

(1) R is the register whose address is n (register n). 
(2) R is the register whose address is the contents of 

register n. 
This second mode (sometimes called indirect addressing) 
plus primitive operation 4 (used for array accessing) gives 
our model the random access property. The  t ime is meas- 
ured by the number of primitive operations performed, and 
the space is measured by the number of registers used in 
any of these operations. 
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