
presented in Figure 1, and to thank his colleagues, Richard
Conway, William Maxwell, and Robert Wagner for their
helpful discussions of the material.

RECEIVED APRIL, 1969; REVISED AUGUST, 1969

REFERENCES

1. ALBERGA, CYRIL, N. String similarity and misspellings.
Comm. ACM I0, 5 (May 1967), 302-313.

2. BLAIR, CHARLES R. A program for correcting spelling errors.
Information and Control 3 (Mar. 1960), 60-67.

3. CONWAY, R. W., AND MAXWELL, W.L. CORC--the Cornell
computing language. Comm. ACM 6 (June 1963), 317-321.

4. CONWAY, R. W., AND MAXWELL, W . L . CUPL---an approach
to introductory computing instruction. Tech. Rep. No. 68-4,
Dept. of Computer Science, Cornell U., Ithaca, N. Y.

5. CONWAY, R. W., AND WORLEY, W. S. The Cornell--IIASP
system for the 360/65. Teeh. Rep. No. 68-A1, Office of Com-
puter Services, Cornell U., Ithaca, N. Y.

6. DAMERAU, F. A technique for computer detection and correc-
tion of spelling errors. Comm. ACM 7, 3 (Mar. 1964), 171-176.

7. DAVIDSON, L. Retrieval of misspelled names in an airlines
passenger reservation system. Comm. ACM 5, 3 (Mar. 1962),
169-171.

8. FREEMAN, D. N. Error correction in CORC: The Cornell
Computing Language. Ph.D. Th., Cornell U., Ithaca, N. Y.,
Sept. 1963.

9. GLANTZ, I-I. W. On the recognition of information with a
digital computer. J. ACM 4, 2 (Apr. 1957), 178-188.

10. HAMMING, R.W. One Man's View of Computer Science. J.
ACM 16, 1 (Jan. 1969), 3-12.

11. JACKSON, M. Mnemonics, Datamation IS (Apr. 1967), 26-29.

An Efficient Context-Free Parsing
Algorithm

JAY EARLEY
University of California,* Berkeley, California

A parsing algorithm which seems to be the most efficient gen-
eral context-free algorithm known is described. It is similar to
both Knuth's LR(k) algorithm and the familiar top-down algo-
rithm. It has a time bound proportional to n 3 (where n is the
length of the string being parsed) in general; it has an n 2 bound
for unambiguous grammars; and it runs in linear time on a large
class of grammars, which seems to include most practical
context-free programming language grammars. In an empirical
comparison it appears to be superior to the top-down and
bottom-up algorithms studied by Griffiths and Petrlck.

KEY WORDS AND PHRASES~ syntax analysis, parsing, context-free grammar,
compilers, computational complexity
CR CATEGORIES: 4.12, 5.22, 5.23

1. I n t r o d u c t i o n

Context-free grammars (BNF grammars) have been
used extensively for describing the syntax of programming
languages and natural languages. Parsing algorithms for
context-free grammars consequently play a large role in
the implementation of compilers and interpreters for pro-

* Computer Science Department. This work was partially sup-
ported by the Office of Naval Research under Contract No.
NONR3656(23) with the Computer Center, University of Cali-
fornia, Berkeley, and by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-67-C-0058),
monitored by the Air Force Office of Scientific Research.

gramming languages and of programs which "unders tand"
or translate natural languages.

Numerous parsing algorithms have been developed.
Some are general, in the sense that they can handle all
context-free grammars, while others can handle only sub-
classes of grammars. The latter, restricted algorithms tend
to be much more efficient. The algorithm described here
seems to be the most efficient of the general algorithms,
and also it can handle a larger class of grammars in linear
time than most of the restricted algorithms. We back up
these claims of efficiency with both a formal investigation
and an empirical comparison.

This paper is based on the author's 1968 report [I] where
many of the points studied here appear in much greater
detail. In Section 2 the terminology used in this paper is
defined. In Section 3 the algorithm is described informally
and in Section 4 it is described precisely. Section 5 is a
s tudy of the formal efficiency properties of the algorithm
and may be skipped by those not interested in this aspect.
Section 6 has the empirical comparison and in Section 7 the
practical use of the algorithm is discussed.

2. T e r m i n o l o g y

A language is a set of strings over a finite set of symbols.
We call these terminal symbols and represent them by
lowercase letters: a, b, c. We use a context-free grammar as a
formal device for specifying which strings are in the set.
This grammar uses another set of symbols, the non-
terminals, which we can think of as syntactic classes. We
use capitals for nonterminals: A, B, C. Strings of either
terminals or nonterminals are represented by Greek letters:
a, fl, 3,. The empty string is k. a ~ represents

k t i m e s

O/ " ' " Or"

[a I is the number of symbols in a. There is a finite set of
productions or rewriting rules of the form A --~ a. The non-
terminal which stands for "sentence" is called the root R

94 C o m m u n i c a t i o n s of the ACM Volume 13 / Number 2 / February, 1970

of the grammar. The productions with a particular non-
terminal D on their left sides are called the alternatives of
D. Hereafter we use grammar to mean context-free gram-
mar.

We will work with this example grammar of simple
arithmetic expressions, grammar AE:

E ---~ T

E-~E+T

T--~P

T-~T*P

P-~a

The terminal symbols are {a ,+ , .} , the nonterminals
are {E, T, P}, and the root is E.

Most of the rest of the definitions are understood to be
with respect to a particular grammar G. We write a ~ f~
if ~I~, ~, ~/, A such that a = ~A~ and fl = ~7/~ and A --+ 7/is

a production. We write a ~ / ~ (fl is derived from a) if 3
strings no, al , • • • , ~ (m > O) such that

The sequence no, . . . , a,~ is called a derivation (of ~ from
a).

A sentential form is a string a such that the root R ~ a.
A sentence is a sentential form consisting entirely of termi-
nal symbols. The language defined by a grammar L(G) is
the set of its sentences. We may represent any sentential
form in at least one way as a derivation tree (or parse tree)
reflecting the steps made in deriving it (though not the
order of the steps). For example, in grammar AE, either
derivation

E~E+T~T+T~T+P~T,P+P

or

E~E+T~E+P~T+P~T,P+P

is represented by

E

E -4- T

T p

T * P

The degree of ambiguity of a sentence is the number of its
distinct derivation trees, A sentence is unambiguous if it
has degree 1 of ambiguity. A grammar is unambiguous if
each of its sentences is unambiguous. A grammar has
bounded ambiguity if there is a bound b on the degree of
ambiguity of any sentence of the grammar. A grammar is
reduced if every nonterminal appears in some derivation of
some sentence.

V o l u m e 13 / Number 2 / February , 1970

A recognizer is an algorithm which takes as input a string
and either accepts or rejects it depending on whether or not
the string is a sentence of the grammar. A parser is a recog-
nizer which also outputs the set of all legal derivation trees
for the string.

3. Informal Explanation

The following is an informal description of the algorithm
as a recognizer: I t scans an input string Xi . . . X~ from
left to right looking ahead some fixed number k of symbols.
As each symbol X~ is scanned, a set of states S~ is con-
structed which represents the condition of the recognition
process at tha t point in the scan. Each state in the set
represents (1) a production such that we are currently
scanning a portion of the input string which is derived
from its right side, (2) a point in tha t production which
shows how much of the production's right side we have
recognized so far, (3) a pointer back to the position in the
input string at which we began to look for that instance of
the production, and (4) a k-symbol string which is a
syntactically allowed successor to tha t instance of the
production. This quadruple is represented here as a pro-
duction, with a dot in it, followed by an integer and a
string.

For example, if we are recognizing a • a with respect to
grammar AE and we have scanned the first a, we would be
in the state set $1 consisting of the following states (ex-
cluding the k-symbol strings):

P --~ a. 0

T ---~ P . 0

T - + T . . P 0

E --~ T . 0

E - ~ E . + T 0

Each state represents a possible parse for the beginning
of the string, given that only the a. has been seen. All the
states have 0 as a pointer, since all the productions repre-
sented must have begun at the beginning of the string.

There will be one such state set for each position in 'the
string. To aid in recognition, we place k -4- 1 right termina-
tors " -~" (a symbol which does not appear elsewhere in
the grammar) at the right end of the input string.

To begin the algorithm, we put the single state

¢,~.R-~ -~ 0
into state set So, where R is the root of the grammar and
where ~ is a new nonterminal.

In general, we operate on a state set St as follows: we
process the states in the set in order, performing one of
three operations on each one depending on the form of the
state. These operations may add more states to S~ and
may also put states in a new state set Si.1. We describe
these three operations by example.

In grammar AE, with k = 1, So starts as the single state

~ .E -~ -~ 0 (1)

C o m m u n i c a t i o n s o f t h e ACM 95

The predictor operation is applicable to a state when there
is a nonterminal to the right of the dot. I t causes us to
add one new state to S~ for each alternative of tha t non-
terminal. We put the dot at the beginning of the produc-
tion in each new state, since we have not scanned any of
its symbols yet. The pointer is set to i, since the state was
created in S~. Thus the predictor adds to S~ all productions
which might generate substrings beginning at X~+~.

In our example, we add to So

E ~ . E + T 4 0 (2)

E--~ .T 4 0 (3)

The k-symbol look-ahead string is 4, since it is after E in
the original state. We must now process these two states.
The predictor is also applicable to them. Operating on (2),
it produces

E--~ .E+T + 0 (4)

E - ~ . T + 0 (5)

with a look-ahead symbol --? because it appears after E in
(2). Operating on (3), it produces

T --~ . T . P 4 0

T--~ .P 4 0

Here the look-ahead symbol is 4 because T is last in the
production and 4 is its look-ahead symbol. Now, the
predictor, operating on (4) produces (4) and (5) again,
but they axe already in So, so we do nothing. From (5) it
produces

T--~ . T . P -+ 0

The rest of So is

T - - + . P + 0

T --~ . T*P

T - ~ .P *

P-~ .a 4

P --~ .a +

19"--> . a *

• 0

0

0

0

0

The predictor is not applicable to any of the last three
states. Instead the scanner is, because it is applicable just
in case there is a terminal to the right of the dot. The
scanner compares tha t symbol with X~+i, and if they
match, it adds the state to S~+1, with the dot moved over
one in the state to indicate tha t tha t terminal symbol has
been scanned.

If X1 = a, then S1 is

P ~ a . 4 0

P ~ a . + 0

P-+a. • 0

these states being added by the scanner.

(6)

If we finish processing S~ and S~+1 remains empty, an
error has occurred in the input string. Otherwise, we start
to process S~+1.

The third operation, the completer, is applicable to a
state if its dot is at the end of its production. Thus the
completer is applicable to each of these states in S~.
I t compares the look-ahead string with Xi+~ . - - X~+~. If
they match, it goes back to the state set indicated by the
pointer, in this case So, and adds all states from So which
have P to the right of the dot. I t moves the dot over P in
these states. Intuitively, So is the state set we were in when
we went looking for tha t P. We have now found it, so we
go back to all the states in So which caused us to look for a
P, and we move the dot over the P in these states to show
that it has been successfully scanned.

I f X2 = -4-, then the completer applied to (6) causes us
to add to $i

T-+P. 4 0

T'-+ P. + 0

T-+P. * 0

Applying the completer to the second of these produces

E - - I T . 4 0

E - a T . -5 0

T --> T . * P 4 0

T "-+ T . * P -5 0

T ---~ T . * P * 0

and finally, from the second of these, we get

¢ - ~ E . 4 4 0

E --~ E . + T 4 0

E--~ E . + T + 0

The scanner then adds to S~

E - + E + . T 4 0

E - + E + . T + 0

If the algorithm ever produces an S~+1 consisting of the
single state

, ~ E 4 . 4 0

then we have correctly scanned an E and the 4, so we are
finished with the string, and it is a sentence of the grammar.

A complete run of the algorithm on grammar AE is
given in Figure 1. In this example, we have writ ten as
one all the states in a state set which differ only in their
look-ahead string. (Thus " 4 + * " as a look-ahead string
stands for three states, with " 4 ", " + " , and "*" as their
respective look-ahead strings.)

The technique of using state sets and the look-ahead are
derived from Knuth ' s work on LR(k) grammars [2]. In
fact our algorithm bears a close relationship to Knuth ' s
algorithm on LR (k) grammars except for the fact tha t

96 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 13 / N u m b e r 2 / F e b r u a r y , 1970

So
(X*fa)

Sl
(X2=+)

GRAMMAR AE

root: E --~ T [E-ST input string = a-sa*a
T- -~P [T*P
P--~a

¢-,.Eq q
E-~ .Eq-T -~ +
E--~ .T -~-5
T--~.T*P 4 +*
T ~ .P ~ -5*
P ~ .a -~ -5*

P-~a. q-5*
T-*P. -~+*
E-~T. ~-5
T --~ T.*P -~-5.
* -~ E.q q
E -~ E.-ST ~-5

S~ E-*E+.T q+
(X~=a) T-~.T*P q +*

T --~ .P -[-5*
P -~ .a q +*

~ = 1

0 Sa P --~ a. -~+* 2
0 (X*=*) T- -~P . "~+* 2
0 E ~ E + T . "~+ 0
0 T - - ~ T . * P "~ + * 2
0
0 S~ T- -~T*.P ~ - 5 " 2

(X~=a) P - ~ . a ~ - 5 . 4
0
0 S~ P - ~ a . "I.-{.-* 4
0 (X~=-~) T- -~T*P. -~-5 . 2
0 E--~ E+T. ~+ 0
0 T-~T.*P ~ +* 2
0 ¢ -~ E.q q 0

E -~ E.-ST "~-5 0
0
2 S~ ~Eq. q 0
2
2

Fro. 1

he uses a stack rather than pointers to keep t rack of what
to do after a parsing decision is made.

Note also that , although it did not develop this way,
our algorithm is in effect a top-down parser [3] in which
we carry along all possible parses simultaneously in such
a way tha t we can often combine like subparses. This cuts
down on duplication of effort and also avoids the left-
recursion problem. (A straightforward top-down parser
may go into an infinite loop on grammars containing left-
recursion, i.e. A --~ A~.)

4. T h e R e c o g n i z e r

The following is a precise description of the recognition
algorithm for input string X~ • • • X . and g rammar G.

NOT~TmN. Number the productions of g rammar G ar-
bitrarily 1, . . . , d - 1, where each production is of the
form

D~--~ C~ "-- C ~ (1 _-< p ~ d -- 1)

where p is the number of symbols on the right-hand side
of the p th production. Add a 0th production

D0 --+ R -~

where R is the root of G, and -~ is a new terminal symbol.
Definition. A state is a quadruple (p, j , f, a> where p, j ,

and f are integers (0 ~ p = < d - - 1) (0 = < j E T) (0__<f
n -t- 1) and a is a string consisting of k terminal symbols.
state set is an ordered set of states. A final state is one in
which j = ~. We add a state to a s tate set by put t ing it
last in the ordered set unless it is already a member.

Definition. Hk (' y) = { ce [a is terminal,] a [= k, and

fl such tha t 7 ~ a~}.
H~ (~) is the set of all k-symbol terminal strings which

begin some string derived from % This is used in forming
the look-ahead string for the states.

THE RECOGNIZER. This is a function of three argu-

ments REC(G, Xi • • • X~, k) computed as follows:

LetX,+~ =-~ (1-<i-< k + l) .
Let S~ be empty (0 ~ i _-< n + 1).
Add (0,0,0,~ ~) to So.

For i ~-- 0 step 1 until n do
Begin

Process the states of St in order, performing one of the following
three operations on each state s = (p, j, f, ~>.

(1) Predictor: If s is nonfinal and Cp¢j+l) is a nonterminal,
then for each q such that C~¢j+n = Dq, and for each
fl 6 tIk(Cp¢~+2) ..- C~o~) add (q, 0, i, fl> to S~.
(2) Completer: If s is final and ~ = Xi+l . . . Xi+~, then for
each (q,l,g,~> 6 Sf (after all states have been added to Sf) such
that C~a+~) = Dp, add (q,l + 1, g, ~> to S~.
(3) Scanner: If s is nonfinal and C~¢y+n is terminal, then if
Cp(~+l) = X~+i , add (p, j + 1, f, o~> to S~+~ .

If S~+i is empty, return rejection.
If i = n and S~+~ = {(0,2,0,-~>}, return acceptance.

End

Notice tha t the ordering imposed on state sets is not
impor tant to their meaning but is simply a device which
allows their members to be processed correctly by the
algorithm. Also note tha t i cannot become greater than n
without either acceptance or rejection occurring because
of the fact tha t -~ appears only in production zero. This
does not really represent a complete description of the
algorithm until we describe in detail how all these opera-
tions are implemented on a machine. The following de-
scription assumes a knowledge of basic list processing tech-
niques.

Implementation
(1) For each nonterminal, we keep a linked list of its

alternatives, for use in prediction.
(2) The states in a state set are kept in a linked list

so they can be processed in order.
(3) In addition, as each state set S~ is constructed, we

put entries into a vector of size i. The f t h entry in this
vector (0 =< f ~ i) is a pointer to a list of all states in St
with pointer f, i.e. states of the form ~p, j , f, ~} 6 S~ for
some p, j , ~. Thus, to test if a s tate (p, j , f, ~) has already
been added to S~, we search through the list pointed to
by the f t h entry in this vector. (This takes an amount of
t ime independent of f .) The vector and lists can be dis-
carded after S~ is constructed.

(4) For the use of the completer, we also keep, for each
state set S~ and nonter~final N, a list of all states <p, j , f, ~)
6 S~ such tha t C~¢i+1) -- N.

(5) I f the g rammar contains null productions (A --~ ~),
we cannot implement the completer in a straightforward
way. When performing the completer on a null s tate
(A-~. a i) we want to add to Si each state in S~ with A
to the right of the dot. But one of these may not have been
added to St yet. So we must note this and check for it
when we add more states to S~.

The above implementat ion description is not meant to
be the only way or the best way to implement the al-
gorithm. I t is merely a method which does allow the

V o l u m e 13 / N u m b e r 2 / F e b r u a r y , 1970 C o m m u n i c a t i o n s o f t h e A C M 9 7

algorithm to achieve the t ime and space bounds which
we quote in Section 5.

The correctness of this recognizer has been proved in
[1]. I t requires no restrictions of any kind on the context-
free g rammar to be successful.

5. T i m e a n d Space B o u n d s

To develop some idea of the efficiency of the algorithm,
we can use a formal model of a computer and measure the
t ime as the number of primitive steps executed by this
model and the space as the number of storage locations
used. We use a random access model (described in the
Appendix) because we feel tha t this model represents most
accurately the properties of real computers which are
relevant to syntax analysis.

We are interested in upper bounds on the t ime (and less
impor tant the space) as a function of n (the length of the
input string) for various classes of context-free grammars.
Specifically, an n 2 algorithm for a subclass A of grammars
means tha t there is some number C (which may depend
on the size of the grammar, but not on n) , such tha t Cn 2
is an upper bound on the number of primitive steps re-
quired to parse any string of length n with respect to a
g rammar in class A.

THE GENERAL CASE. Our algorithm is an n 3 recognizer
in general. The reasons for this are:

(a) The number of states in any state set S~ is propor-
tional to i (--~i) because the ranges of the p, j , and a
components of a state are bounded, while only the f com-
ponent depends on i, and it is bounded by n.

(b) The scanner and predictor operations each execute
a bounded number of steps per state in any state set. So
the total t ime for processing the states in S~ plus the scanner
and predictor operations is ~-~i.

(c) The completer executes ~--~i steps for each state it
processes in the worst case because it may have to add ~ f
states for Si , the state set pointed back to. So it takes
~ i 2 steps in S i.

(d) Summing from i = 0, • . . , n + 1 gives ~ n ~ steps.
This bound holds even if the look-ahead feature is not

used (by setting/c = 0). The bound is no bet ter than tha t
obtained by Younger [4] for Coeke's algorithm [5], bu t
our algorithm is bet ter for two reasons. Ours does not
require the g rammar to be put into any special form
(Coeke's required normal form), and ours actually does
bet ter than n 3 on most grammars, as we shall show (Cocke's
always requires n3). Furthermore, al though Younger 's n 3
result is obtained on a Turing machine, his algorithm is in
no way made faster by put t ing it on a random access
machine.

UNAMBmUOUS GRAMMARS. The completer is the only
operation which forces us to use i 2 steps for each s tate set
we process, making the whole thing n ~. So the question is,
in what cases does this operation involve only i steps in-
stead of i2? I f we examine the s tate set S~ after the com-
pleter has been applied to it, there are at most proportional
to i states in it. So unless some of them were added in more

than one way (this can happen; tha t ' s why we must test
for the existence of a state before we add it to a s tate set)
then it took at most H i steps to do the operation.

In the case tha t the g rammar is unambiguous and re-
duced, we can show tha t each such state gets added in
only one way. Assume tha t the state (q, j + 1, f, a) is added
to Si in two different ways by the completer. Then we have

Sl = (p l , PPl, f l , Xi,1 . . . Xi+k) C S~,

s2 = (p2, P2, f2, X~+i . . . X~+k) E S~,

(q, j , f, a) E Ss, and Sf2 , Dp~ = Cq(i+l) = D~2

and either pl ~ p~ or fl ~ f2, for otherwise sl and s2 would
be the same state.

So we have

X~ . . . XsC~ . - . Cq(i+l) ~ X~ . . . Xf~ C ~ . . - C ~

.
X 1 • • • X i

and

X l " ' " X f C q l " ' " Cq(3+l) ~ X l " ' " Xf2C!a21 " ' " Cp2~2

X1 . . . X ,

and since pl = p2 and fl = f2 cannot both be true, the
above two derivations of X~ . . - X¢ are represented by
different derivation trees. Therefore since the g rammar is
reduced, every nonterminal generates some terminal string,
and so there exists an ambiguous sentence X ~ • . . X ~ a for
some a.

So if the g rammar is unambiguous, the completer ex-
ecutes ~ i steps per state set and the t ime is bounded by
n 2. Notice tha t the t ime is also n 2 for g rammars with
bounded ambigui ty since each state can then be added by
the completer only a bounded number of times. In [1] we
show tha t the t ime is n 2 for an even larger class of gram-
mars, and thereby also obtain Younger 's n ~ results for
linear and metalinear grammars [6].

Kasaini [7] has also obtained independently the result for
unambiguous grammars, but his algorithm (which is a
modification of Cocke's) has the disadvantage tha t i t re-
quires the g rammar in normal form. His algorithm, like
ours, achieves its t ime bound on a random access machine
only.

LINEAR TIME. We now characterize the class of gram-
mars which the algorithm will do in t ime n. We notice t ha t
for some grammars the number of states in a s tate set can
grow indefinitely with the length of the string being recog-
nized. For some others there is a fixed bound on the size
of any state set. We call the la t ter g rammars b o u n d e d state
grammars. They can be done by the algorithm in t ime n for
the following reason. Let b be the bound on the number of
states in any s tate set. Then the processing of the states
in a state set together with the scanner and predictor re-
quires ~ b steps, and the completer requires ~ b 2 steps.
Summing over all the state sets gives us ~b2n or ,~n
steps.

So the class of t ime n grammars for our algorithm in-

98 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 13 / N u m b e r 2 / F e b r u a r y , 1970

eludes the bounded state grammars , bu t i t ac tual ly in-
eludes more. We now examine how this class of g rammars
compares with those t h a t can be done in linear t ime by
other algorithms. Mos t of the previously ment ioned "re-

str ic ted" algori thms work on some subclass of g rammars
which they can do in t ime n, and we will hencefor th call
t h e m time n algorithms. K n u t h ' s L R (k) a lgor i thm [2]
works on a class of g rammars which includes those of
just about all the others, so his will be a good one for com-
parison if we expect to do well.

I t turns ou t t h a t a lmost all L R (k) g rammars are
bounded state (except for certain r ight recursive gram-
mars) . And even though some L R (k) g rammars m a y not
be bounded state, all of t hem can be done in t ime n by
our a lgor i thm if a look-ahead of k or greater is used. I n
fact any finite union of L R (k) g rammars (obtained b y
combining the g rammars in a s t ra ightforward wa y in order
to generate the union of the languages) is a t ime n gram-
mar for our a lgor i thm given the proper look-ahead. (This
is proved in [1].)

I t is here t h a t the look-ahead feature of the a lgor i thm
is mos t obviously useful. We can obtain the n 3 and n 2 re-
sults wi thou t it, bu t we cannot do all L R (k) g rammars in
t ime n wi thout it. I n addition, a look-ahead of k = 1 is
a good practical device for cut t ing down on a lot of ex-
t raneous processing with m a n y common grammars .

The t ime n g rammars for our algori thm, then, include
bounded state grammars , finite unions of L R (k) gram-
mars, and others. T h e y include m a n y g rammars which
are ambiguous, and some with unbounded degree of am-
biguity, bu t unfor tuna te ly there are also unambiguous
g rammars which require t ime n 2.

GRAMMAR UBDA

root: A - + x [AA sentences: X" (n >= 1)

REC(UBDA, x 4, 1)

S0 4,-+.Aq -i 0 8a A - + x . qx 2
A - - , . x -ix 0 A--~AA. -ix 1
A--+.AA -ix 0 A-+AA. -ix 02

A - + A . A qx 2 81 A u x . -ix 0
A--~A.A -ix 1 4, ~A. - I -i o

A--~A.A -ix 0 4, -+A.-I -i 0
A - + . x -ix 1 A - + A . A -ix 0
A - + . A A -ix 1 A--~.x qx 3

A - + . A A -ix 3
82 A ~ x . -ix 1

A---~AA. qx 0 $4 A - + x . -ix 3
A~_AA. -ix 2 A--~A.A -ix 1

4,---~A.-I -i 0 A-+AA. -ix i ~
A--+AA. -~x 0 3 A - ~ A . A -ix 0
A--+A.A -ix 3 A - + . x -ix 2
A--~A.A -ix 2 A--~.AA ~x 2
A--~A.A -~x 1
4, ~ h . - i -i 0
A--~A.A -ix 0
A--~ .x -ix 4
A--+.AA -ix 4

Ss 4,--'~A-I. -i 0

The following examples i l lustrate some of the ideas in
this section. G r a m m a r U B D A (Figure 2) ac tual ly re-
requires t ime proport ional to ¢ . Not ice t h a t s ta te

A --~ A A . ~x 02

gets added twice by the completer. This is signified b y the
superscript on the 0. One can tell b y the looks of the super-
scripts on states

A ---~ AA. ~x 2

A --~ AA. ~x 12

A ~ A A . ~x 0 ~

in $4 t h a t there are H i states, each of which is added H i
times, in ~-~n state sets, producing the n 3 behavior.

G r a m m a r B K (Figure 3) has unbounded ambigui ty , b u t
i t is a t ime n grammar , and in fact it is bounded state.
This can be seen because all the s tate sets after Si are the
same size. G r a m m a r P A L (Figure 4) is an unambiguous
g r a m m a r which requires t ime n 2. S~ and S~+1 each have
i + 4 states in them, up to and including S~, so the tota l
number of states is ~-~n 2.

SPACE. Since the space is taken up b y ~ n state sets,
each containing N n states, the space bound is n 2 in general.
This is comparable to Cocke 's and Kasami ' s algorithms,
which also require n 2. However , it has the advan tage over
Cocke 's in t h a t the n 2 is only an upper bound for ours,
while his requires n 2 all the time.

So

S~

GRAMMAR BK

root: K --~] KJ sentences:
J ~ F I I
F - + x
X-~x

REC(BK, x", 1)

x~ (n ->_ 0)

4 , ~ . K - I -i o
K--*. "Ix 0
K- -~ .KJ -ix 0
4, ~ K.-I -i 0
K - + K . J -ix 0
J --+ .F ~x 0
J - + . I -ix 0
F~.x -ix 0
I - ~ . x -Ix 0

F ~ x . -ix 0
I ~ x . -ix 0
J ~ F . -ix 0
J - + I . -ix 0
K - + K J . -ix 02
K- -~K.J -ix 0
4 , ~ K . - I -i o
J --~ .F -ix 1
J --~ .I -ix 1
F~.x -ix I
I - + . x -ix 1

Si (2 =< i ~ n)
F --~ x. -ix i - 1
F-->x. -ix i - - 1
J o F . -ix i -- 1
,1 - ~ I . -Ix i - - 1
K - + K J . -ix 02
K - + K . J -ix 0
4, -~ K.-I 0
J - + . F -ix i
J ~ .I -ix i
F - -~ .x -ix i
I --~ .x -ix i

Sn%l
¢ - ~ K ~ . ~ 0

FIG. 2 FIG. 3

V o l u m e 13 / N u m b e r 2 / February , 1970 C o m m u n i c a t i o n s o f t h e ACM 99

A--~ x [

So ¢~
A
A

S~ A
A
¢
A
A

$2

S~

xAx

--+X.

x.Ax
A d
.X

-+ . xAx

A-+x.

A--~ x.Ax

A ~ xA.x

A ---~ .x

A --~ . xAx

A --~ xAx.
A ---> x .

A-~, x.Ax
4' ~A.-~
A ~ xA.x
A-.-~ . x

A -+ . xAx

GRAMMAR PAL

sentences : x"

REC(PAL, x s, 0):

-+.A-~ 0 $4 A ~ x A x . 1
.x 0 A--~x. 3
.xAx 0 A - + x . A x 3

A ----~ xA.x 0 0
A --~ xA.x 2 0

0 A--~ .x 4
1 A ~ .xAx 4

i $5 A ~ xAx. 0
1 A --~ xAx. 2
1 A - + x . 4

A - * x.Ax 4 0
2 qa --~ A.-~ 0

A --+ xA.x 1 2
A -* xA.x 3

0 A - * .x 5
2 A -* xAx. 5
2
0
1 S~ ~b --+A-~. 0

3
3

(n => 1, nodd)

FIG. 4

6. E m p i r i c a l R e s u l t s

W e have p r o g r a m m e d the a lgo r i t hm and t e s t ed i t aga ins t
t he t o p - d o w n and b o t t o m - u p parsers e v a l u a t e d b y Griff i ths
and P e t r i c k [8]. These are t he o ldes t of t he contex t - f ree
parsers , a n d t h e y d e p e n d heav i l y on back t r ack i ng . Pe r -
haps because of this , t he i r u p p e r bounds for t ime are
exponen t i a l (C" for some cons t an t C) . However , t h e y
also can do well on some g rammars , a n d b o t h have been
used in numerous compi ler -compi lers , so i t wil l be in-
t e r e s t ing to compare our a lgo r i t hm wi th them.

T h e Griff i ths a n d P e t r i c k d a t a is no t in t e r m s of a c t u a l
runn ing t imes b u t in t e rms of " p r i m i t i v e ope ra t i ons . "
T h e y h a v e expressed the i r a lgo r i thms as sets of nonde-
t e rmin i s t i c r ewr i t ing rules for a Tur ing -mach ine - l i ke device.
E a c h app l i ca t ion of one of these is a p r i m i t i v e opera t ion .
W e h a v e chosen as our p r imi t i ve ope ra t ion the ac t of
add ing a s t a t e to a s t a t e set (or a t t e m p t i n g to a d d one
which is a l r e a d y there) . W e feel t h a t th is is compa ra b l e to
t he i r p r i m i t i v e opera t ion because b o t h are in some sense
t he mos t complex ope ra t ion pe r fo rmed b y the a lgo r i t hm
whose complex i ty is i n d e p e n d e n t of the size of t he g r a m -
m a r or i n p u t s t r ing.

W e compare t he a lgor i thms on seven dif ferent g r a m m a r s .
T w o of the i r examples were no t used because t he exac t
g r a m m a r was no t given. F o r t he first four, Griff i ths and
P e t r i c k were able to f ind c losed-form expressions for t he i r
resul ts , so we d id also (F igure 5) . B U and T D are t he
b o t t o m - u p and t o p - d o w n a lgor i thms respec t ive ly and S B U
and S T D are the i r select ive versions. I t is obvious f rom
these resul ts t h a t S B U is b y far t he bes t of t he o the r al-
gor i thms , a n d the res t of the i r d a t a bea r s th i s out . There-

100 C o m m u n i c a t i o n s of t h e ACM

G1 G2 G3 G4
root: root: root: root:

S --+ Ab S - t a B S-+ ab } aSb S ---~ AB
A - ~ a [Ab B - * a B [b A - - ~ a [A b

B-~bc l bB I Bd

Gram- Sen-
mar tence T D S T D B U S B U Ours
G1 ab n (n ~ + 7 n (n 2 + 7 n 9 n + 5 9 n + 5 4 n + 7

+2)/2 +2) /2
G2 anb 3 n + 2 2 n + 2 11.2 n + 7 4 n + 4 4 n + 4
G3 anb n 5n -- 1 5n -- 1 11.2 n-~ -- 5 6n 6n + 4
G4 abncd ~ 2 n+6 ~ 2 n+2 ~ 2 n+s (n 3 + 21n 2 + 463 183 + 8

+ 15)/3

FIG. 5

PROPOSITIONAL CALCULUS GRMViMAR

root: F - - ~ C I S I P] U
C ~ U D U
U ~ (F) I ~ U I L
L- -~L ' I p [q I r
S - ~ U V S [U V U
P--~U AP [UAU

Sentence Length PA SBU
p 1 14 18
(PAq) 5 89 56
(p ' A q) V r V p V q ' 13 232 185
p ~ ((q 3 N (r ' V (p A q))) 26 712 277

(q 'Vr)
N(,~P 'A (qVr)Ap'))
((pAq)V (qAr) V(rAp '))

3 N ((p ' V q ') A (r ' V p))

OUrs

28
68

148
277

17 1955 223 141
38 2040 562 399

FIG. 6

GRAMMAR GRE
root: X - - + a l X b l Y a

Y - + e [YdY

Sentence Length PA SB U Ours
ededea 6 35 52 33
ededeab 4 10 75 92 45
ededeab 1° 16 99 152 63
ededeab 2°° 206 859 2052 633
(ed)%abb 12 617 526 79
(ed)7eabb 18 24352 16336 194
(ed)Seabb 20 86139 54660 251

FIO. 7

GRAM.MAR NSE

root: S--+ AB
A ~ a 1SC
B--~b I DB
C - ~ c
D- -~d

Sentence Length S B U Ours

adbcddb 7 43 44
ad3bcbcd~bcd4b 18 111 108
adbcd2bcd6bcd3b 19 117 114
ad18b 20 120 123
a(bc)~da(bcd)Mbcd4b 24 150 141
a (bcd) Mbcd3bcb 16 100 95

FIG. 8

Volume 13 / Number 2 / February, 1970

fore we compare our algorithm with SBU only. We used
our algorithm with k = 0. The two are comparable on
G1, G2, G3, the simple grammars, but on G4, which is
very ambiguous, ours is clearly superior--n to n *.

For the next three grammars we present only the raw
data (Figures 6-8). The data for our algorithm was ob-
tained by programming it and having the program com-
pute the number of primitive operations it performed. We
have also included the data from [8] on PA, the predictive
analyzer, which is a modified top-down algorithm. On the
propositional calculus grammar, PA seems to be running
in time n 2, while both SBU and ours run in time n, with
ours a little faster. Grammar GRE produces two kinds
of behavior. All three algorithms go up linearly with the
number of "b" 's, with SBU using a considerably higher
constant coefficient. However, PA and SBU go up ex-
ponentially with the number of "ed" 's, while ours goes
up as the square. Grammar NSE is quite simple, and each
algorithm takes time n with the same coefficient.

So we conclude that our algorithm is clearly superior
to the backtracking algorithms. I t performs as well as
the best of them on all seven grammars and is substan-
tially faster on some.

There are at least four distinct general context-free al-
gorithms besides ours - -TD, BU, Kasami's n 2, and Cocke's
n ~. We have shown so far tha t our algorithm achieves time
bounds which are as good as those of any of these al-
gorithms, or better. However, we are also interested in
how our algorithm compares with these algorithms in a
practical sense, not just at an upper bound.

We have just presented some empirical results in this
section which indicate tha t our algorithm is bet ter than
T D and BU. Furthermore, our algorithm must be su-
perior to Cooke's since his always achieves its upper bound
of n 8. This leaves Kasami's. His algorithm [7] is actually
described as an algorithm for unambiguous grammars, bu t
it can easily be extended to a general algorithm. In this
form we suspect tha t it will have an n 3 bound in general
and will be n 2 as often as ours. We are aware of no results
about the class of grammars that it can parse in time n.

7. T h e P r a c t i c a l Use o f t h e A l g o r i t h m

In this section we discuss the question, in what areas and
in what form can the algorithm best be put to use?

TH~ FoRm. Before we can do much with it, we must
make the recognizer into a parser. This is done by altering
the recognizer so that it builds a parse tree as it does the
recognition process. Each time we perform the comple-
ter operation adding a state E - ~ aD .~ g (ignoring look-
ahead) we construct a pointer from the instance of D in
that state to the state D --~ 7. f which caused us to do the
operation. This indicates tha t D was parsed as 7. In case
D is ambiguous there will be a set of pointers from it,
one for each completer operation which caused E -+ aD. f lg
to be added to the particular state set. Each symbol in
.y will also have pointers from it (unless it is terminal),
and so on, thus representing the derivation tree for D.

In this way, when we reach the terminating state
~b --~ R ~ . 0 we will have the parse tree for the sentence
hanging from R if it is unambiguous, and otherwise we will
have a factored representation of all possible parse trees.
In [1] a precise description of this process is given.

The time bounds for the parser are the same as those of
the recognizer, while the space bound goes up to n 3 in
general in order to store the parse trees.

We recommend using consistently a look-ahead of k = 1.
In fact it would probably be most efficient to implement
the algorithm to do just a look-ahead of 1. To implement
the full look-ahead for any k would be more costly in
programming effort and less efficient overall since so few
programming languages need the extra look-ahead. Most
programming languages use only a one character context
to disambiguate their constructs, and if two characters
are needed in some cases, our algorithm has the nice
property that it will not fail, i t may just take a little longer.

Our algorithm has the useful property that it can be
modified to handle an extension of context-free grammars
which makes use of the Kleene star notation. In this nota-
tion: A --~ {BC} . D means A may be rewritten as an
arbitrary number (including 0) of BC's followed by a D.
I t generates a language equivalent to tha t generated by
A --~ D]BCA. However, the parse structure given to the
language is different in the two grammars:

A A

B C A

B C B C D B C A

I
D

Structures like tha t on the left cannot be obtained using
context-free grammars at all, so this extension is useful.
The modification to our algorithm which implements it
involves two additional operations:

(1) Any state of the form

is replaced by

A ~ o.{,e}*~ f

A ~ o~{.~}*~ f

A ---~ ,x{~}*.~ f

indicating that fl may be present or absent.
(2) Any state of the form

is replaced by

A--+ ,~{ .~}*~ f

A ---+ o~{~}*.~ f

indicating the fl may be repeated or not.

Volume 13 / Number 2 / February, 1970 C o m m u n i c a t i o n s o f the ACM 101

THE UsE. The algorithm will probably be most useful
in natural language processing systems where the full power
of context-free grammars is used. I t should also be useful
in compiler writing systems and extendible languages. In
most compiler writing systems and extendible languages,
the programmer is allowed to express the syntax (or the
syntax extension) of his language in something like BNF,
and the system uses a parser to analyze subsequent pro-
grams in this language. Programming language grammars
tend to lie in a restricted subset of context-free grammars
which can be processed efficiently, yet some compiler
writing systems in fact use general parsers, so ours may be
of use here. In addition to its efficiency properties, ours
has the advantage that it accepts the grammar in the form
in which it is written, so tha t semantic routines can be
associated with productions without fear tha t the parser
will not reflect the original structure of the grammar.

Our algorithm will not compete so favorably with the
time n algorithms, however. Certainly ours will do in time
n any grammar that a t ime n parser can do at all, but
this does not take into account the constant coefficient of n.
Most of the time n algorithms really consist of a two-fold
process. First they compile from an acceptable grammar a
parser for tha t particular grammar, and then the grammar
may be discarded and the compiled parser used directly to
analyze strings. This allows the time n algorithms to in-
corporate much specialized information into the compiled
parser, thus reducing the coefficient of n to something
quite small--probably an order of magnitude less than
that of our algorithm.

Consequently we have developed a compilation process
for our algorithm which works only on time n grammars
and reduces our coefficient to approximately the same order
of magnitude as those of the time n parsers. This may make
our algorithm competitive with them, but we have not
implemented and tested it, so this is speculation. Some sort
of efficient time n parser for a larger class of grammars is
needed, however, because most restricted parsers suffer
from the problem that the grammar one naturally writes
for many programming languages is not acceptable to
them, and much fiddling must be done with the grammar
to get it accepted. Knuth 's algorithm is an exception to
this, but it has the problem that the size of the compiled
parser is much too great for reasonable programming lan-
guage grammars (see [1, p. 129]). Unfortunately, our
compiled algorithm, since it is similar to Knuth 's , may
also have these problems.

8. C o n c l u s i o n

In conclusion let us emphasize tha t our algorithm not
only matches or surpasses the best previous results for
times n 3 (Younger), n 2 (Kasami) and n (Knuth) , but it
does this with one single algorithm which does not have
specified to it the class of grammars it is operating on and
does not require the grammar in any special form. In
other words, Knuth ' s algorithm works only 'on LR(k)

grammars and Kasami's (at least in his paper) only on
unambiguous ones, but ours works on them all and seems
to do about as well as other algorithms automatically.

A p p e n d i x

RANDOM ACCESS MACHINE. This model has an un-
bounded number of registers (counters), each of which may
contain any nonnegative integer. These registers are named
(addressed) by successive nonnegative integers. The primi-
tive operations which are allowed on these registers are as
follows:

(1) Store 0 or the contents of one register into another.
(2) Test the contents of one register against 0 or against

the contents of another register for equahty.
(3) Add 1 or subtract 1 from the contents of a register

(taking 0 - 1 = 0).
(4) Add the contents of one register to another.
The control for this model is a normal finite state device.

The most important property of this machine is tha t in the
above four operations, the register R to be operated on
may be specified in two ways:

(1) R is the register whose address is n (register n).
(2) R is the register whose address is the contents of

register n.
This second mode (sometimes called indirect addressing)
plus primitive operation 4 (used for array accessing) gives
our model the random access property. The t ime is meas-
ured by the number of primitive operations performed, and
the space is measured by the number of registers used in
any of these operations.

Acknowledgments. I am deeply indebted to Robert Floyd
for his guidance in this research. I also benefited from dis-
cussions with Albert Meyer, Rudolph Krutar , and James
Gray, and from detailed criticisms by the referees.

RECEIVED FEBRUARY, 1969; REVISED JUNE, 1969

REFERENCES

1. EXRLEr, J. An efficient context-free parsing algorithm. Ph.D.
Thesis, Comput. Sei. Dept., Carnegie-Mellon U., Pittsburgh,
Pa., 1968.

2. KNUTH, D. E. On the translation of languages from left to
right. Information and Control 8 (1965), 607-639.

3. FLOYD, R. W. The syntax of programming languages--a
survey. IEEE Trans. EC-13, 4 (Aug. 1964).

4. YOUNGER, D. H. Recognition and parsing of context-free
languages in time n 3. Information and Control 10 (1967), 189-
208.

5. HAys, D. Automatic language-data processing. In Computer
Applications in the Behavioral Sciences, H. Borko (Ed.)
Prentice Hall, Englewood Cliffs, N.J., 1962.

6. YOUNGER, D . H . Context-free language processing in time n 3.
General Electric R & D Center, Schenectady, N.Y., 1966.

7. KASAMI, T., AND TORII, K. A syntax-analysis procedure for
unambiguous context-free grammars. J. ACM 16, 3 (July
1969), 423--431.

8. GRIFFITHS, T., AND PETRICK, S. On the relative efficiencies of
context-free grammar recognizers. Comm. ACM 8, 5 (May
1965), 289-300.

9. FELDMAN, J., AND GRIES, D. Translator writing systems.
Comm. ACM 11, 2 (Feb. 1968), 77-113.

102 Communicat ions of the ACM Volume 13 / Number 2 / February, 1970

