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1. Introduction 
 
 For our project we were interested in extracting target phrases from text.  This has many 
applications − we focused on extracting speaker, location and time information from email 
announcements and on extracting the type of cuisine from restaurant reviews.  We tried to implements a 
flexible Hidden Markov Model so that we could find the best structure for the type of data being 
extracted.  We were pleased with the performance of our system − because our training data was not hand 
tagged there were even instances when our system (in our opinion) pulled out phrases which were more 
relevant to the question than those phrases that were tagged.  
 
2. Our Data Sets 
 
 When looking for data sets we were interested in having some variety in the types of information 
being extracted.  We also specifically wanted data sets where there could be more than one correct answer 
for a target and where the target could occur more than once in the text.  We were less concerned with 
how many types of targets where in a particular text or the possible range of target values. 
 
2.1 Cuisine Type 
 
 We created one of the datasets ourselves using 
information we found on the web.  We wanted 
restaurant reviews from which we would extract 
information on the type of cuisine, but the restaurant 
dataset we found of AFS (‘Musclea−Zagat’) was 
insufficient − there were not enough reviews and the 
reviews did not tend to actually mention the type of 
cuisine, a critical characteristic.  Instead we found a list 
of reviews on the website for the ‘Online 
Washingtonian’ which were perfect for our needs.  On 
the webpage for each review there was a separate list of 
cuisines.  For most reviews, most of the cuisines that the 
restaurant was labeled under, where mentioned in the 
review.  Lastly, they had a master list with links to every 
review so it was easy to systematically find every 
review.  We parsed the reviews into files containing a 
list of possible target values (the cuisines) and the text 
of the review with all instances of target values tagged 
(for example ‘and <cuisine>Turkish</cuisine> 
dishes’).  In the list of possible target values we only Figure 1: Sample webpage from Online 

Washingtonian 



Figure 2: Sample HMM Structures 

kept the cuisines which were actually mentioned in the review; for instance, for the sample review to the 
right ‘Turkish’ and ‘Russian’ were kept as possible target values, but ‘Middle Eastern’ was not kept 
because it did not occur in the text of the review.  This was important because the task is information 
extraction, so there has to be something to extract.  If none of the specified cuisines was mentioned in the 
review then the review was abandoned.  We ended up with a dataset containing 752 reviews.  One thing 
we found interesting about this dataset was that one wanted to extract all of the different types of cuisine 
− just finding one was not necessarily sufficient; for instance, in the writers’ opinions, there is likely to be 
a large difference in the quality of the sushi at a restaurant that just serves Japanese food and one which 
serves both Japanese and Chinese food.  
 
2.1 Speaker, Location, Start and End Time in Email Announcements 
 
 We also created four datasets from Dayne Freitag’s announcement dataset which we found at 
/afs/ir/data/linguistic-data/IE/RISE/freitag-sa-tagged.  We separated the announcements into datasets 
based on location, speaker, start time and end time and reparsed them in a similar manner to the restaurant 
data.  In these datasets it was not infrequent for a particular target to occur more than once in the text, but 
in different form, such as ‘Professor Orloff’ and ‘Professor Ann Orloff’ or ‘4:30 p.m’ and ‘4:30 PM’ 
(although sometimes the different target values actually refer to different things, such as in events with 
more than one speaker).  In these cases it is sufficient for the model to extract any of the target values 
because the target values are, effectively, synonyms.  We were also drawn to the announcement dataset 
because of the variety in the types of targets.  Times tend to be very rigidly formatted, so prefix and suffix 
information is less important, while locations and names are less rigid thus increasing the value of prefix 
and suffix information.  We were also able to produce fairly large datasets from the announcement 
dataset: start time: 485 instances, end time: 228 instances, speaker: 409 instances, location: 463 instances. 
 
3. Our Hidden Markov Model (HMM) 
 
3.1 Structure 
 
 We built a Hidden Markov Model which has a good deal of flexibility in terms of settings.  Our 
model has four types of nodes, taken from the model in (Freitag and McCallum 2000): target states which 
emit only tokens to be extracted; prefix states, which emit tokens leading up to the target; suffix states, 
which emit tokens following the target; and background states which emit all other tokens.  Our structure 
has some flexibility − it can handle a varying 
number of prefix and suffix nodes, but they 
must all be inline.  The general structure has one 
background state, which can transition to either 
itself or the first prefix state.  Each prefix state 
can transfer only to the next prefix state, or if it 
is the last prefix state to the target state.  There 
is one target state with a self−loop an 
d a transition to the first suffix state.  The suffix 
states are similar to the prefix states, in that each one can transfer only to the next one unless it is the last 
in which case it transitions to the original background state.  The emissions from the prefix states together 
make the string preceding the target and the suffix states emit the string following the target.   
 
 
 
 



3.2 Learning the Transition and Emission Probabilities 
 

We used maximum likelihood estimation for assigning the transition and emission probabilities.   
However, sometimes targets would be too close to one another in the text to make it through all of the 
prefix and suffix states between the targets (for example, ‘the <cuisine>Italian</cusine> and 
<cuisine>American</cuisine> food’) and in those cases we did not allow non−zero probabilities for 
“short−cuts” in the structure, those transitions just would not be used in estimating the transition 
probabilities. 
 
3.3 Smoothing 
 

We did not use any smoothing in determining the transition  probabilities.  The structures are 
rigid and we did not want to smooth away the zero probabilities inherent to them.  Moreover, our data sets 
where large enough that we felt the produced transition probabilities where likely to be fairly accurate.  
We did use smoothing for the emission probabilities − this was imperative to because of the high 
likelihood of encountering new words.  We used Lidstone’s law for smoothing and our model allows the 
user to specify the value of the smoothing factor(λ).  We also allow different smoothing factors to be used 
based on the type of node.  This makes sense as target nodes should use the least smoothing (smallest λ) 
because target values tend to be repeated in other instances, and background nodes should use the most 
smoothing (highest λ) since they are meant to just sort of emit anything.  We found that as the smoothing 
factors increased, precision also increased and recall decreased.  This is discussed in more depth later in 
the report.  One set of values which we found performed well was (λbackground = 0.01, λprefix = 0.0005, λtarget 
= 0.00005, λsuffix = 0.0005). 
 
3.4 Other factors 
 
 Capitalization of and in words was another factor which struck us as being important.  It seems 
that sometimes capitalization is important − when deciding if a token was likely to be emitted from the 
target node, whether or not the token is capitalized is very important.  All of the cuisine types were 
capitalized and speaker names and building names also have a strong tendency to be capitalized.  For the 
target node only, when finding the initial emission probabilities we also found the probability that the 
token was capitalized.  Then, when we want the probability of the target node emitting a particular token, 
the probability given is actually the probability of that word as discussed previously, multiplied by the 
probability of capitalized/not capitalized based on whether the token is capitalized.  Because every cuisine 
is capitalized, our HMM never extracted a non−capitalized word as a cuisine target − when we turned this 
feature off the precision decreased substantially.    
 It is also important to recognize when two words are equal regardless any capitalization in the 
word.  Therefore, when calculating the emission probability of a token as discussed in the previous 
section all capitalization in the word is ignored. 
 
3.5 Picking the Best path (Viterbi) 
 
 We used a straightforward implementation of the Viterbi algorithm for picking the most likely 
path through the HMM.  We used log−addition instead of regular multiplications to prevent the 
probabilities from going to zero.  Because the HMM is cyclic and contains self−loops it is possible for the 
chosen path to contain any number of target emissions, from 0 to many.  Our HMM will occasionally 
pick best paths that contain no target emissions.  This is rare − out of 752 restaurant reviews the HMM 
declined to pick a target 3 times (0.40%).  It tended to occur when the target value was only mentioned 
once in the text and in a non-helpful surrounding, such as “inside the look turns stylish 
<cuisine>Mexican</cuisine> with cowhide slipper chairs and cinnamon walls.”  Picking more than one 



target of course makes sense.  If a target occurs more than once (such as when a restaurant serves more 
than one type of food) than the HMM should pick more than one target.  Frequently, if the exact same 
target value occurred more than once in the text the HMM would pick out all instances of it − it would 
then rank its outputs by how frequently they occurred. 
 
3.6 Outputting an answer 
 
 The output of the HMM is just all of the distinct targets found in the best path of the previous 
section.  If consecutive tokens are emitted from the target node then the tokens are concatenated into one 
output token (e.g.”Middle Eastern” or “South American”). 
 
4. Performance 
 
Overall we were pleased with the performance of our HMM.  As we will discuss, the performance 
numbers did not always do justice to the actual performance. 
 
4.1 Testing 
 
We used the leave−one−out method of cross−validation when testing our system. 
 
4.2 Evaluation Criteria 
 

As was hinted at earlier, we consider precision and recall to be the best means of evaluating the 
performance of our HMM.  However, there are many fine points to consider.  For each data set we found 
the average precision and the average recall.  Each iteration of testing in the cross validation trained on all 
but one instance and then tested the remaining instance.  The precision (the proportion of output target 
values which were correct) and recall (the proportion of correct target values which were output) of that 
instance i is: 

 

 precisioni = true positives(i)/true positives(i) + false positives(i) 
 recalli = true positives(i)/true positives(i) + false negatives(i) 
 

What is the precision when nothing is output for an instance?  It is 0/0 which is undefined.  We just 
ignored those instances when calculating the average precision.  However, in the same situation, the recall 
is 0, not undefined, so it is still factored in.  The averages are then: 
 

 avg_prec =  (Σi є dataset (true_positives(i)/true_positives(i) + false_positives(i))(?is_defined))/|dataset|−|undefined| 
 avg_recall = (Σi є dataset true_positives(i)/true_positives(i) + false_negatives(i))/|dataset| 
 

It is important to note that these values are different that the overall precision and overall recall: 
 

 overall_prec = (Σ[i є dataset] true_positives(i)/ 
Σ[i є dataset] true_positives(i) + false_positives(i)) 

overall_recall = (Σ[i є dataset] true_positives(i)/ 
Σ[i є dataset] true_positives(i) + false_negatives(i)) 

 

The average assigns equal value to each instance in the training set, while the latter places more weight on 
instances where the target can take on more values.  We felt that the former was a more valid evaluation 
criteria because we felt that each instance was equally important.   
 We also used a different equation to find the recall for a particular instance for the datasets where 
we considered different target values to be synonyms for the same thing.  As previously discussed, if 
there is more than one possible value for a location of a talk then clearly these values must be synonyms 
so therefore it is OK to return any of them so recall was computed as a binary function of whether any 
true positives where found.  We used this equation for speaker, location, start time and end time. 
 When computing performance we used the F measure as discussed in the test: 
 



 F = (αP−1 + (1− α)R−1)−1 
 

We computed performance using two different alphas.  We used α = ½, which weighs precision and recall 
equally and is commonly known as F1.  We also computed performance with α = ¼ which places more 
value on recall because we felt that in the task of information extraction recall is more important.  It is 
better to have all of the information, along with some garbage, than to not have enough information. 
 
4.3 Evaluation Pitfalls 
 

First, we have some problems with the tagging, an inevitable side effect of the fact that our 
datasets were not hand−tagged. In some cases, the information we extract seems more correct or is in 
some way complimentary to the target words in the training set. For example, in one restaurant review, 
the target word is “Afghan”, while our system chose “Middle Eastern”.   In other cases, the tagging is 
ambiguous. For example, again in the cuisine set, the one restaurant is tagged as “Modern American” in 
the training text, while another is tagged as both "Modern American" and "American". This is 
contradictory, given that in real life Modern American is a subset of American, and that the decision 
whether both or only one of them has to be listed is a matter of principle, not of features of the restaurant 
and would cause harm our system’s performance: 

 

cuisine/1044.txt 
System: [American] (1) 
Actual: [Modern American, American] (2) 
precision: 1.0 
recall: 0.5 
 

cuisine/1006.txt 
System: [American] (1) 
Actual: [Modern American] (1) 
precision: 0.0 
recall: 0.0 
 

In other text, our system picked “Afghani” and “Afgan”, and “Afghani” was considered wrong but 
“Afghan” right, which does not make sense either. 

Indeed, in many of the cases the mistake is real. For instance a review of Chinese restaurant 
mentioned that it is located next to a Middle Eastern, and this mislead the HMM to assume Middle 
Eastern to be a target, which was plain wrong. In other cases even more random words appear, for 
example the word "discussion" when we are trying to extract a location. 

The controversy of what is a good way to evaluate information extraction exibits itself also in the 
results we get on the announcements data set. It is not always necessary to extract the full information in 
order for it to be useful. For instance, in the following example we obtain fairly useful information about 
the speakers - 2 last names:   

 

speaker/p120.txt 
System: [Rutenbar, Lave, Julia] (3) 
Actual: [Julia Evens, Lester Lave, Rob Rutenbar] (3) 
precision: 0.0 
recall: 0.0 
 

However, this has not been tagged as useful and we do not get any credit for it, with both precision and 
recall being 0. In a different case, one can obtain all the necessary information, but it is considered useless 
because it is not explicitly structured in the way that is expected: 
 

speaker/p235.txt 
System: [Dr., Jelinek, Dr. Fred] (3) 
Actual: [Fred Jelinek, Dr. Fred Jelinek] (2) 



precision: 0.0 
recall: 0.0 

 
4.4 Resultant Structures 
 
 As part of the output we had the HMM print the most common emissions for all nodes that where 
not background nodes.  This was quite interesting because you could really see the pattern matching that 
was going on.  Below are pictures of some of the structures produced by the HMM for the assorted 
datasets (ovals are prefix/suffix, rectangles are target and background is not shown): 

 
 

 
 
 
4.5 Actual Performance 
 
 We have attached at the end of this report a table containing all runs with different settings for the 
length of the prefix and suffix and different values for the smoothing factors.  For each dataset it has been 
sorted according to performance (F measure with α = ¼ as previously discussed).  The sorting is helpful 
because it allows other patterns about the relative importance of different attributes and settings stand out.  
Our best performances are summed up in the following table: 



 
dataset prefix 

length 
suffix 
length λbackgr λprefix λtarget λsuffix 

average 
precision 

average 
recall 

F1 
performance 

F (α = ¼) 
performance 

cuisine 2 1 0.002 0.0004 0.00001 0.0003 0.58921 0.917886 0.717708 0.805547 
end 
time 2 2 0.002 0.0004 0.0001 0.0003 0.583228 0.899123 0.707517 0.791894 

location 2 1 0.002 0.0004 0.00001 0.0003 0.134042 0.298056 0.184921 0.228238 
speaker 1 2 0.002 0.0001 0.001 0.0003 0.199599 0.616137 0.30152 0.404895 
start 
time 2 2 0.002 0.0004 0.00001 0.0003 0.556992 0.969072 0.707395 0.817812 

 
4.5.1 Cuisine 
 
 For identifying cuisine the length of the prefix and suffix was very important − the shorter the 
better.  It also appears to do better when  λtarget is smaller, which make since because this makes it only 
pick out words for cuisines which it knows are types of cuisines, regardless of their context. 
 
4.5.2 End Time 
 
 For determining end time the HMM performed better with length 2 for both the prefix and the 
suffix.  It also appeared to do slightly better when the λs where larger. 
 
4.5.3 Location 
 
 We never managed to configure a satisfactory HMM fr identifying location, but it did do better 
with a mid−length prefix and suffix and small λs.  Tweaking the attributes caused the performance to 
almost double between the worst settings and the best setting! 
 
4.5.4 Speaker 
 
 For extracting the speaker it was very clear that the HMM needed a suffix of length 2 and a 
(comparably) very large λtarget.  Intuitively, this makes sense because the HMM is not likely to have seen 
all names and must rely much more on context.  In fact, here tweaking parameters caused a 10−fold 
increase in performance from 0.04 to 0.4! 
 
4.5.5 Start Time 
 
 For start time, the λs tended to be the more influential factor and for six of the top seven 
performing HMMs they were λbackgr = 0.002, λprefix = 0.0004, λtarget = 0.00001, λsuffix = 0.0003.  The next 
most important factor was that the prefix and suffix both be of length 2. 
 
5. Conclusion 
 
 We built an HMM for extracting data and it worked to varying degrees depending on the type of 
information being extracted and the internal settings. 
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