
Using Hidden Markov Models to Extract Target Phrases From Text

Final Project CS224N
Spring 2003

Jenny Finkel

jrfinkel@stanford.edu
Penka Vassileva Markova

penka@stanford.edu

1. Introduction

 For our project we were interested in extracting target phrases from text. This has many
applications − we focused on extracting speaker, location and time information from email
announcements and on extracting the type of cuisine from restaurant reviews. We tried to implements a
flexible Hidden Markov Model so that we could find the best structure for the type of data being
extracted. We were pleased with the performance of our system − because our training data was not hand
tagged there were even instances when our system (in our opinion) pulled out phrases which were more
relevant to the question than those phrases that were tagged.

2. Our Data Sets

 When looking for data sets we were interested in having some variety in the types of information
being extracted. We also specifically wanted data sets where there could be more than one correct answer
for a target and where the target could occur more than once in the text. We were less concerned with
how many types of targets where in a particular text or the possible range of target values.

2.1 Cuisine Type

 We created one of the datasets ourselves using
information we found on the web. We wanted
restaurant reviews from which we would extract
information on the type of cuisine, but the restaurant
dataset we found of AFS (‘Musclea−Zagat’) was
insufficient − there were not enough reviews and the
reviews did not tend to actually mention the type of
cuisine, a critical characteristic. Instead we found a list
of reviews on the website for the ‘Online
Washingtonian’ which were perfect for our needs. On
the webpage for each review there was a separate list of
cuisines. For most reviews, most of the cuisines that the
restaurant was labeled under, where mentioned in the
review. Lastly, they had a master list with links to every
review so it was easy to systematically find every
review. We parsed the reviews into files containing a
list of possible target values (the cuisines) and the text
of the review with all instances of target values tagged
(for example ‘and <cuisine>Turkish</cuisine>
dishes’). In the list of possible target values we only Figure 1: Sample webpage from Online

Washingtonian

Figure 2: Sample HMM Structures

kept the cuisines which were actually mentioned in the review; for instance, for the sample review to the
right ‘Turkish’ and ‘Russian’ were kept as possible target values, but ‘Middle Eastern’ was not kept
because it did not occur in the text of the review. This was important because the task is information
extraction, so there has to be something to extract. If none of the specified cuisines was mentioned in the
review then the review was abandoned. We ended up with a dataset containing 752 reviews. One thing
we found interesting about this dataset was that one wanted to extract all of the different types of cuisine
− just finding one was not necessarily sufficient; for instance, in the writers’ opinions, there is likely to be
a large difference in the quality of the sushi at a restaurant that just serves Japanese food and one which
serves both Japanese and Chinese food.

2.1 Speaker, Location, Start and End Time in Email Announcements

 We also created four datasets from Dayne Freitag’s announcement dataset which we found at
/afs/ir/data/linguistic-data/IE/RISE/freitag-sa-tagged. We separated the announcements into datasets
based on location, speaker, start time and end time and reparsed them in a similar manner to the restaurant
data. In these datasets it was not infrequent for a particular target to occur more than once in the text, but
in different form, such as ‘Professor Orloff’ and ‘Professor Ann Orloff’ or ‘4:30 p.m’ and ‘4:30 PM’
(although sometimes the different target values actually refer to different things, such as in events with
more than one speaker). In these cases it is sufficient for the model to extract any of the target values
because the target values are, effectively, synonyms. We were also drawn to the announcement dataset
because of the variety in the types of targets. Times tend to be very rigidly formatted, so prefix and suffix
information is less important, while locations and names are less rigid thus increasing the value of prefix
and suffix information. We were also able to produce fairly large datasets from the announcement
dataset: start time: 485 instances, end time: 228 instances, speaker: 409 instances, location: 463 instances.

3. Our Hidden Markov Model (HMM)

3.1 Structure

 We built a Hidden Markov Model which has a good deal of flexibility in terms of settings. Our
model has four types of nodes, taken from the model in (Freitag and McCallum 2000): target states which
emit only tokens to be extracted; prefix states, which emit tokens leading up to the target; suffix states,
which emit tokens following the target; and background states which emit all other tokens. Our structure
has some flexibility − it can handle a varying
number of prefix and suffix nodes, but they
must all be inline. The general structure has one
background state, which can transition to either
itself or the first prefix state. Each prefix state
can transfer only to the next prefix state, or if it
is the last prefix state to the target state. There
is one target state with a self−loop an
d a transition to the first suffix state. The suffix
states are similar to the prefix states, in that each one can transfer only to the next one unless it is the last
in which case it transitions to the original background state. The emissions from the prefix states together
make the string preceding the target and the suffix states emit the string following the target.

3.2 Learning the Transition and Emission Probabilities

We used maximum likelihood estimation for assigning the transition and emission probabilities.
However, sometimes targets would be too close to one another in the text to make it through all of the
prefix and suffix states between the targets (for example, ‘the <cuisine>Italian</cusine> and
<cuisine>American</cuisine> food’) and in those cases we did not allow non−zero probabilities for
“short−cuts” in the structure, those transitions just would not be used in estimating the transition
probabilities.

3.3 Smoothing

We did not use any smoothing in determining the transition probabilities. The structures are
rigid and we did not want to smooth away the zero probabilities inherent to them. Moreover, our data sets
where large enough that we felt the produced transition probabilities where likely to be fairly accurate.
We did use smoothing for the emission probabilities − this was imperative to because of the high
likelihood of encountering new words. We used Lidstone’s law for smoothing and our model allows the
user to specify the value of the smoothing factor(λ). We also allow different smoothing factors to be used
based on the type of node. This makes sense as target nodes should use the least smoothing (smallest λ)
because target values tend to be repeated in other instances, and background nodes should use the most
smoothing (highest λ) since they are meant to just sort of emit anything. We found that as the smoothing
factors increased, precision also increased and recall decreased. This is discussed in more depth later in
the report. One set of values which we found performed well was (λbackground = 0.01, λprefix = 0.0005, λtarget
= 0.00005, λsuffix = 0.0005).

3.4 Other factors

 Capitalization of and in words was another factor which struck us as being important. It seems
that sometimes capitalization is important − when deciding if a token was likely to be emitted from the
target node, whether or not the token is capitalized is very important. All of the cuisine types were
capitalized and speaker names and building names also have a strong tendency to be capitalized. For the
target node only, when finding the initial emission probabilities we also found the probability that the
token was capitalized. Then, when we want the probability of the target node emitting a particular token,
the probability given is actually the probability of that word as discussed previously, multiplied by the
probability of capitalized/not capitalized based on whether the token is capitalized. Because every cuisine
is capitalized, our HMM never extracted a non−capitalized word as a cuisine target − when we turned this
feature off the precision decreased substantially.
 It is also important to recognize when two words are equal regardless any capitalization in the
word. Therefore, when calculating the emission probability of a token as discussed in the previous
section all capitalization in the word is ignored.

3.5 Picking the Best path (Viterbi)

 We used a straightforward implementation of the Viterbi algorithm for picking the most likely
path through the HMM. We used log−addition instead of regular multiplications to prevent the
probabilities from going to zero. Because the HMM is cyclic and contains self−loops it is possible for the
chosen path to contain any number of target emissions, from 0 to many. Our HMM will occasionally
pick best paths that contain no target emissions. This is rare − out of 752 restaurant reviews the HMM
declined to pick a target 3 times (0.40%). It tended to occur when the target value was only mentioned
once in the text and in a non-helpful surrounding, such as “inside the look turns stylish
<cuisine>Mexican</cuisine> with cowhide slipper chairs and cinnamon walls.” Picking more than one

target of course makes sense. If a target occurs more than once (such as when a restaurant serves more
than one type of food) than the HMM should pick more than one target. Frequently, if the exact same
target value occurred more than once in the text the HMM would pick out all instances of it − it would
then rank its outputs by how frequently they occurred.

3.6 Outputting an answer

 The output of the HMM is just all of the distinct targets found in the best path of the previous
section. If consecutive tokens are emitted from the target node then the tokens are concatenated into one
output token (e.g.”Middle Eastern” or “South American”).

4. Performance

Overall we were pleased with the performance of our HMM. As we will discuss, the performance
numbers did not always do justice to the actual performance.

4.1 Testing

We used the leave−one−out method of cross−validation when testing our system.

4.2 Evaluation Criteria

As was hinted at earlier, we consider precision and recall to be the best means of evaluating the
performance of our HMM. However, there are many fine points to consider. For each data set we found
the average precision and the average recall. Each iteration of testing in the cross validation trained on all
but one instance and then tested the remaining instance. The precision (the proportion of output target
values which were correct) and recall (the proportion of correct target values which were output) of that
instance i is:

 precisioni = true positives(i)/true positives(i) + false positives(i)
 recalli = true positives(i)/true positives(i) + false negatives(i)

What is the precision when nothing is output for an instance? It is 0/0 which is undefined. We just
ignored those instances when calculating the average precision. However, in the same situation, the recall
is 0, not undefined, so it is still factored in. The averages are then:

 avg_prec = (Σi є dataset (true_positives(i)/true_positives(i) + false_positives(i))(?is_defined))/|dataset|−|undefined|
 avg_recall = (Σi є dataset true_positives(i)/true_positives(i) + false_negatives(i))/|dataset|

It is important to note that these values are different that the overall precision and overall recall:

 overall_prec = (Σ[i є dataset] true_positives(i)/
Σ[i є dataset] true_positives(i) + false_positives(i))

overall_recall = (Σ[i є dataset] true_positives(i)/
Σ[i є dataset] true_positives(i) + false_negatives(i))

The average assigns equal value to each instance in the training set, while the latter places more weight on
instances where the target can take on more values. We felt that the former was a more valid evaluation
criteria because we felt that each instance was equally important.
 We also used a different equation to find the recall for a particular instance for the datasets where
we considered different target values to be synonyms for the same thing. As previously discussed, if
there is more than one possible value for a location of a talk then clearly these values must be synonyms
so therefore it is OK to return any of them so recall was computed as a binary function of whether any
true positives where found. We used this equation for speaker, location, start time and end time.
 When computing performance we used the F measure as discussed in the test:

 F = (αP−1 + (1− α)R−1)−1

We computed performance using two different alphas. We used α = ½, which weighs precision and recall
equally and is commonly known as F1. We also computed performance with α = ¼ which places more
value on recall because we felt that in the task of information extraction recall is more important. It is
better to have all of the information, along with some garbage, than to not have enough information.

4.3 Evaluation Pitfalls

First, we have some problems with the tagging, an inevitable side effect of the fact that our
datasets were not hand−tagged. In some cases, the information we extract seems more correct or is in
some way complimentary to the target words in the training set. For example, in one restaurant review,
the target word is “Afghan”, while our system chose “Middle Eastern”. In other cases, the tagging is
ambiguous. For example, again in the cuisine set, the one restaurant is tagged as “Modern American” in
the training text, while another is tagged as both "Modern American" and "American". This is
contradictory, given that in real life Modern American is a subset of American, and that the decision
whether both or only one of them has to be listed is a matter of principle, not of features of the restaurant
and would cause harm our system’s performance:

cuisine/1044.txt
System: [American] (1)
Actual: [Modern American, American] (2)
precision: 1.0
recall: 0.5

cuisine/1006.txt
System: [American] (1)
Actual: [Modern American] (1)
precision: 0.0
recall: 0.0

In other text, our system picked “Afghani” and “Afgan”, and “Afghani” was considered wrong but
“Afghan” right, which does not make sense either.

Indeed, in many of the cases the mistake is real. For instance a review of Chinese restaurant
mentioned that it is located next to a Middle Eastern, and this mislead the HMM to assume Middle
Eastern to be a target, which was plain wrong. In other cases even more random words appear, for
example the word "discussion" when we are trying to extract a location.

The controversy of what is a good way to evaluate information extraction exibits itself also in the
results we get on the announcements data set. It is not always necessary to extract the full information in
order for it to be useful. For instance, in the following example we obtain fairly useful information about
the speakers - 2 last names:

speaker/p120.txt
System: [Rutenbar, Lave, Julia] (3)
Actual: [Julia Evens, Lester Lave, Rob Rutenbar] (3)
precision: 0.0
recall: 0.0

However, this has not been tagged as useful and we do not get any credit for it, with both precision and
recall being 0. In a different case, one can obtain all the necessary information, but it is considered useless
because it is not explicitly structured in the way that is expected:

speaker/p235.txt
System: [Dr., Jelinek, Dr. Fred] (3)
Actual: [Fred Jelinek, Dr. Fred Jelinek] (2)

precision: 0.0
recall: 0.0

4.4 Resultant Structures

 As part of the output we had the HMM print the most common emissions for all nodes that where
not background nodes. This was quite interesting because you could really see the pattern matching that
was going on. Below are pictures of some of the structures produced by the HMM for the assorted
datasets (ovals are prefix/suffix, rectangles are target and background is not shown):

4.5 Actual Performance

 We have attached at the end of this report a table containing all runs with different settings for the
length of the prefix and suffix and different values for the smoothing factors. For each dataset it has been
sorted according to performance (F measure with α = ¼ as previously discussed). The sorting is helpful
because it allows other patterns about the relative importance of different attributes and settings stand out.
Our best performances are summed up in the following table:

dataset prefix

length
suffix
length λbackgr λprefix λtarget λsuffix

average
precision

average
recall

F1
performance

F (α = ¼)
performance

cuisine 2 1 0.002 0.0004 0.00001 0.0003 0.58921 0.917886 0.717708 0.805547
end
time 2 2 0.002 0.0004 0.0001 0.0003 0.583228 0.899123 0.707517 0.791894

location 2 1 0.002 0.0004 0.00001 0.0003 0.134042 0.298056 0.184921 0.228238
speaker 1 2 0.002 0.0001 0.001 0.0003 0.199599 0.616137 0.30152 0.404895
start
time 2 2 0.002 0.0004 0.00001 0.0003 0.556992 0.969072 0.707395 0.817812

4.5.1 Cuisine

 For identifying cuisine the length of the prefix and suffix was very important − the shorter the
better. It also appears to do better when λtarget is smaller, which make since because this makes it only
pick out words for cuisines which it knows are types of cuisines, regardless of their context.

4.5.2 End Time

 For determining end time the HMM performed better with length 2 for both the prefix and the
suffix. It also appeared to do slightly better when the λs where larger.

4.5.3 Location

 We never managed to configure a satisfactory HMM fr identifying location, but it did do better
with a mid−length prefix and suffix and small λs. Tweaking the attributes caused the performance to
almost double between the worst settings and the best setting!

4.5.4 Speaker

 For extracting the speaker it was very clear that the HMM needed a suffix of length 2 and a
(comparably) very large λtarget. Intuitively, this makes sense because the HMM is not likely to have seen
all names and must rely much more on context. In fact, here tweaking parameters caused a 10−fold
increase in performance from 0.04 to 0.4!

4.5.5 Start Time

 For start time, the λs tended to be the more influential factor and for six of the top seven
performing HMMs they were λbackgr = 0.002, λprefix = 0.0004, λtarget = 0.00001, λsuffix = 0.0003. The next
most important factor was that the prefix and suffix both be of length 2.

5. Conclusion

 We built an HMM for extracting data and it worked to varying degrees depending on the type of
information being extracted and the internal settings.

6. References

C. Manning and H. Schutze, Foundations of Statistical Natural Language Processing. The MIT Press,
England (1999).

D. Freitag and A. McCallum, "Information extraction with HMM structures learned by stochastic
optimization," Proceedings of AAAI-2000.

D. Freitag and A. McCallum, "Information extraction using HMMs and shrinkage," Proceedings of the
AAAI-99 Workshop on Machine Learning for Information Extraction.

